HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeq2 Unicode version

Theorem hoeq2 23287
Description: A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoeq2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  S  =  T
) )
Distinct variable groups:    x, y, S    x, T, y

Proof of Theorem hoeq2
StepHypRef Expression
1 ralcom 2828 . . 3  |-  ( A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) ) )
21a1i 11 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e.  ~H  (
x  .ih  ( S `  y ) )  =  ( x  .ih  ( T `  y )
) ) )
3 ffvelrn 5827 . . . . 5  |-  ( ( S : ~H --> ~H  /\  y  e.  ~H )  ->  ( S `  y
)  e.  ~H )
4 ffvelrn 5827 . . . . 5  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
5 hial2eq2 22562 . . . . . 6  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  ( S `  y )  =  ( T `  y ) ) )
6 hial2eq 22561 . . . . . 6  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )  <->  ( S `  y )  =  ( T `  y ) ) )
75, 6bitr4d 248 . . . . 5  |-  ( ( ( S `  y
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )
) )
83, 4, 7syl2an 464 . . . 4  |-  ( ( ( S : ~H --> ~H  /\  y  e.  ~H )  /\  ( T : ~H
--> ~H  /\  y  e. 
~H ) )  -> 
( A. x  e. 
~H  ( x  .ih  ( S `  y ) )  =  ( x 
.ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `
 y )  .ih  x )  =  ( ( T `  y
)  .ih  x )
) )
98anandirs 805 . . 3  |-  ( ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  /\  y  e.  ~H )  ->  ( A. x  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. x  e.  ~H  ( ( S `  y )  .ih  x
)  =  ( ( T `  y ) 
.ih  x ) ) )
109ralbidva 2682 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. y  e. 
~H  A. x  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  A. y  e.  ~H  A. x  e.  ~H  (
( S `  y
)  .ih  x )  =  ( ( T `
 y )  .ih  x ) ) )
11 hoeq1 23286 . 2  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. y  e. 
~H  A. x  e.  ~H  ( ( S `  y )  .ih  x
)  =  ( ( T `  y ) 
.ih  x )  <->  S  =  T ) )
122, 10, 113bitrd 271 1  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( S `
 y ) )  =  ( x  .ih  ( T `  y ) )  <->  S  =  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   -->wf 5409   ` cfv 5413  (class class class)co 6040   ~Hchil 22375    .ih csp 22378
This theorem is referenced by:  adjcoi  23556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-hfvadd 22456  ax-hvcom 22457  ax-hvass 22458  ax-hv0cl 22459  ax-hvaddid 22460  ax-hfvmul 22461  ax-hvmulid 22462  ax-hvdistr2 22465  ax-hvmul0 22466  ax-hfi 22534  ax-his1 22537  ax-his2 22538  ax-his3 22539  ax-his4 22540
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-2 10014  df-cj 11859  df-re 11860  df-im 11861  df-hvsub 22427
  Copyright terms: Public domain W3C validator