HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodmval Structured version   Unicode version

Theorem hodmval 26332
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hodmval  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( S  -op  T
)  =  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( T `  x ) ) ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem hodmval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 25592 . . 3  |-  ~H  e.  _V
21, 1elmap 7444 . 2  |-  ( S  e.  ( ~H  ^m  ~H )  <->  S : ~H --> ~H )
31, 1elmap 7444 . 2  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
4 fveq1 5863 . . . . 5  |-  ( f  =  S  ->  (
f `  x )  =  ( S `  x ) )
54oveq1d 6297 . . . 4  |-  ( f  =  S  ->  (
( f `  x
)  -h  ( g `
 x ) )  =  ( ( S `
 x )  -h  ( g `  x
) ) )
65mpteq2dv 4534 . . 3  |-  ( f  =  S  ->  (
x  e.  ~H  |->  ( ( f `  x
)  -h  ( g `
 x ) ) )  =  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( g `  x ) ) ) )
7 fveq1 5863 . . . . 5  |-  ( g  =  T  ->  (
g `  x )  =  ( T `  x ) )
87oveq2d 6298 . . . 4  |-  ( g  =  T  ->  (
( S `  x
)  -h  ( g `
 x ) )  =  ( ( S `
 x )  -h  ( T `  x
) ) )
98mpteq2dv 4534 . . 3  |-  ( g  =  T  ->  (
x  e.  ~H  |->  ( ( S `  x
)  -h  ( g `
 x ) ) )  =  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( T `  x ) ) ) )
10 df-hodif 26327 . . 3  |-  -op  =  ( f  e.  ( ~H  ^m  ~H ) ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ~H  |->  ( ( f `  x
)  -h  ( g `
 x ) ) ) )
111mptex 6129 . . 3  |-  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( T `  x ) ) )  e.  _V
126, 9, 10, 11ovmpt2 6420 . 2  |-  ( ( S  e.  ( ~H 
^m  ~H )  /\  T  e.  ( ~H  ^m  ~H ) )  ->  ( S  -op  T )  =  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( T `  x )
) ) )
132, 3, 12syl2anbr 480 1  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( S  -op  T
)  =  ( x  e.  ~H  |->  ( ( S `  x )  -h  ( T `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    |-> cmpt 4505   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   ~Hchil 25512    -h cmv 25518    -op chod 25533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-hilex 25592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-hodif 26327
This theorem is referenced by:  hodval  26337  hosubcli  26364
  Copyright terms: Public domain W3C validator