HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Unicode version

Theorem hoadddi 25386
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )

Proof of Theorem hoadddi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 991 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  A  e.  CC )
2 ffvelrn 5953 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
323ad2antl2 1151 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( T `  x )  e.  ~H )
4 ffvelrn 5953 . . . . . . 7  |-  ( ( U : ~H --> ~H  /\  x  e.  ~H )  ->  ( U `  x
)  e.  ~H )
543ad2antl3 1152 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( U `  x )  e.  ~H )
6 ax-hvdistr1 24589 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T `  x )  e.  ~H  /\  ( U `  x )  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x
) ) )  =  ( ( A  .h  ( T `  x ) )  +h  ( A  .h  ( U `  x ) ) ) )
71, 3, 5, 6syl3anc 1219 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T `  x )  +h  ( U `  x )
) )  =  ( ( A  .h  ( T `  x )
)  +h  ( A  .h  ( U `  x ) ) ) )
8 hosval 25323 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( T  +op  U ) `  x )  =  ( ( T `
 x )  +h  ( U `  x
) ) )
98oveq2d 6219 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( A  .h  (
( T  +op  U
) `  x )
)  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
1093expa 1188 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  (
( T `  x
)  +h  ( U `
 x ) ) ) )
11103adantl1 1144 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( A  .h  ( ( T `
 x )  +h  ( U `  x
) ) ) )
12 homval 25324 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
13123expa 1188 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
14133adantl3 1146 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
15 homval 25324 . . . . . . . 8  |-  ( ( A  e.  CC  /\  U : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  U ) `  x )  =  ( A  .h  ( U `  x ) ) )
16153expa 1188 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
17163adantl2 1145 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  U ) `  x )  =  ( A  .h  ( U `
 x ) ) )
1814, 17oveq12d 6221 . . . . 5  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) )  =  ( ( A  .h  ( T `
 x ) )  +h  ( A  .h  ( U `  x ) ) ) )
197, 11, 183eqtr4d 2505 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( T  +op  U ) `  x ) )  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
20 hoaddcl 25341 . . . . . . 7  |-  ( ( T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( T  +op  U
) : ~H --> ~H )
2120anim2i 569 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  e.  CC  /\  ( T 
+op  U ) : ~H --> ~H ) )
22213impb 1184 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )
)
23 homval 25324 . . . . . 6  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( A  .h  ( ( T  +op  U ) `  x ) ) )
24233expa 1188 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( T  +op  U
) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
2522, 24sylan 471 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( A  .h  ( ( T 
+op  U ) `  x ) ) )
26 homulcl 25342 . . . . . . 7  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
27 homulcl 25342 . . . . . . 7  |-  ( ( A  e.  CC  /\  U : ~H --> ~H )  ->  ( A  .op  U
) : ~H --> ~H )
2826, 27anim12i 566 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H ) )
29283impdi 1274 . . . . 5  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )
)
30 hosval 25323 . . . . . 6  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A 
.op  T )  +op  ( A  .op  U ) ) `  x )  =  ( ( ( A  .op  T ) `
 x )  +h  ( ( A  .op  U ) `  x ) ) )
31303expa 1188 . . . . 5  |-  ( ( ( ( A  .op  T ) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3229, 31sylan 471 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
)  =  ( ( ( A  .op  T
) `  x )  +h  ( ( A  .op  U ) `  x ) ) )
3319, 25, 323eqtr4d 2505 . . 3  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x ) )
3433ralrimiva 2830 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  A. x  e.  ~H  ( ( A  .op  ( T  +op  U ) ) `  x )  =  ( ( ( A  .op  T ) 
+op  ( A  .op  U ) ) `  x
) )
35 homulcl 25342 . . . . 5  |-  ( ( A  e.  CC  /\  ( T  +op  U ) : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
3620, 35sylan2 474 . . . 4  |-  ( ( A  e.  CC  /\  ( T : ~H --> ~H  /\  U : ~H --> ~H )
)  ->  ( A  .op  ( T  +op  U
) ) : ~H --> ~H )
37363impb 1184 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) ) : ~H --> ~H )
38 hoaddcl 25341 . . . . 5  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( A  .op  U ) : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
3926, 27, 38syl2an 477 . . . 4  |-  ( ( ( A  e.  CC  /\  T : ~H --> ~H )  /\  ( A  e.  CC  /\  U : ~H --> ~H )
)  ->  ( ( A  .op  T )  +op  ( A  .op  U ) ) : ~H --> ~H )
40393impdi 1274 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )
41 hoeq 25343 . . 3  |-  ( ( ( A  .op  ( T  +op  U ) ) : ~H --> ~H  /\  ( ( A  .op  T )  +op  ( A 
.op  U ) ) : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4237, 40, 41syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( A 
.op  ( T  +op  U ) ) `  x
)  =  ( ( ( A  .op  T
)  +op  ( A  .op  U ) ) `  x )  <->  ( A  .op  ( T  +op  U
) )  =  ( ( A  .op  T
)  +op  ( A  .op  U ) ) ) )
4334, 42mpbid 210 1  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  U : ~H --> ~H )  ->  ( A  .op  ( T  +op  U ) )  =  ( ( A 
.op  T )  +op  ( A  .op  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   -->wf 5525   ` cfv 5529  (class class class)co 6203   CCcc 9395   ~Hchil 24500    +h cva 24501    .h csm 24502    +op chos 24519    .op chot 24520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-hilex 24580  ax-hfvadd 24581  ax-hfvmul 24586  ax-hvdistr1 24589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-hosum 25313  df-homul 25314
This theorem is referenced by:  hosubdi  25391  honegdi  25392  ho2times  25402  opsqrlem6  25728
  Copyright terms: Public domain W3C validator