MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphindis Structured version   Unicode version

Theorem hmphindis 20171
Description: Homeomorphisms preserve topological indiscretion. (Contributed by FL, 18-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1  |-  X  = 
U. J
Assertion
Ref Expression
hmphindis  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )

Proof of Theorem hmphindis
StepHypRef Expression
1 dfsn2 4027 . . 3  |-  { (/) }  =  { (/) ,  (/) }
2 indislem 19374 . . . . . . 7  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
3 preq2 4095 . . . . . . . 8  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
,  (/) } )
43, 1syl6eqr 2502 . . . . . . 7  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  (  _I  `  A
) }  =  { (/)
} )
52, 4syl5eqr 2498 . . . . . 6  |-  ( (  _I  `  A )  =  (/)  ->  { (/) ,  A }  =  { (/)
} )
65breq2d 4449 . . . . 5  |-  ( (  _I  `  A )  =  (/)  ->  ( J  ~=  { (/) ,  A } 
<->  J  ~=  { (/) } ) )
76biimpac 486 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  ~=  {
(/) } )
8 hmph0 20169 . . . 4  |-  ( J  ~=  { (/) }  <->  J  =  { (/) } )
97, 8sylib 196 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) } )
109unieqd 4244 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  U. J  =  U. { (/) } )
11 hmphdis.1 . . . . 5  |-  X  = 
U. J
12 0ex 4567 . . . . . . 7  |-  (/)  e.  _V
1312unisn 4249 . . . . . 6  |-  U. { (/)
}  =  (/)
1413eqcomi 2456 . . . . 5  |-  (/)  =  U. { (/) }
1510, 11, 143eqtr4g 2509 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  X  =  (/) )
1615preq2d 4101 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  { (/) ,  X }  =  { (/)
,  (/) } )
171, 9, 163eqtr4a 2510 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =  (/) )  ->  J  =  { (/) ,  X }
)
18 hmphen 20159 . . . . . 6  |-  ( J  ~=  { (/) ,  A }  ->  J  ~~  { (/)
,  A } )
1918adantr 465 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  {
(/) ,  A }
)
20 necom 2712 . . . . . . . 8  |-  ( (  _I  `  A )  =/=  (/)  <->  (/)  =/=  (  _I 
`  A ) )
21 fvex 5866 . . . . . . . . 9  |-  (  _I 
`  A )  e. 
_V
22 pr2nelem 8385 . . . . . . . . 9  |-  ( (
(/)  e.  _V  /\  (  _I  `  A )  e. 
_V  /\  (/)  =/=  (  _I  `  A ) )  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2312, 21, 22mp3an12 1315 . . . . . . . 8  |-  ( (/)  =/=  (  _I  `  A
)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2420, 23sylbi 195 . . . . . . 7  |-  ( (  _I  `  A )  =/=  (/)  ->  { (/) ,  (  _I  `  A ) }  ~~  2o )
2524adantl 466 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  (  _I  `  A
) }  ~~  2o )
262, 25syl5eqbrr 4471 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  { (/) ,  A }  ~~  2o )
27 entr 7569 . . . . 5  |-  ( ( J  ~~  { (/) ,  A }  /\  { (/)
,  A }  ~~  2o )  ->  J  ~~  2o )
2819, 26, 27syl2anc 661 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  ~~  2o )
29 hmphtop1 20153 . . . . . . 7  |-  ( J  ~=  { (/) ,  A }  ->  J  e.  Top )
3029adantr 465 . . . . . 6  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e. 
Top )
3111toptopon 19307 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3230, 31sylib 196 . . . . 5  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  e.  (TopOn `  X )
)
33 en2top 19360 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  ~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3432, 33syl 16 . . . 4  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J 
~~  2o  <->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) ) )
3528, 34mpbid 210 . . 3  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  ( J  =  { (/) ,  X }  /\  X  =/=  (/) ) )
3635simpld 459 . 2  |-  ( ( J  ~=  { (/) ,  A }  /\  (  _I  `  A )  =/=  (/) )  ->  J  =  { (/) ,  X }
)
3717, 36pm2.61dane 2761 1  |-  ( J  ~=  { (/) ,  A }  ->  J  =  { (/)
,  X } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   _Vcvv 3095   (/)c0 3770   {csn 4014   {cpr 4016   U.cuni 4234   class class class wbr 4437    _I cid 4780   ` cfv 5578   2oc2o 7126    ~~ cen 7515   Topctop 19267  TopOnctopon 19268    ~= chmph 20128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-1o 7132  df-2o 7133  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-top 19272  df-topon 19275  df-cn 19601  df-hmeo 20129  df-hmph 20130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator