Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmoval Structured version   Unicode version

Theorem hmoval 25851
 Description: The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmoval.8
hmoval.9
Assertion
Ref Expression
hmoval
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem hmoval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hmoval.8 . 2
2 oveq12 6305 . . . . . . 7
32anidms 645 . . . . . 6
4 hmoval.9 . . . . . 6
53, 4syl6eqr 2516 . . . . 5
65dmeqd 5215 . . . 4
75fveq1d 5874 . . . . 5
87eqeq1d 2459 . . . 4
96, 8rabeqbidv 3104 . . 3
10 df-hmo 25792 . . 3
11 ovex 6324 . . . . . 6
124, 11eqeltri 2541 . . . . 5
1312dmex 6732 . . . 4
1413rabex 4607 . . 3
159, 10, 14fvmpt 5956 . 2
161, 15syl5eq 2510 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1395   wcel 1819  crab 2811  cvv 3109   cdm 5008  cfv 5594  (class class class)co 6296  cnv 25603  caj 25789  chmo 25790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-hmo 25792 This theorem is referenced by:  ishmo  25852
 Copyright terms: Public domain W3C validator