HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopre Structured version   Unicode version

Theorem hmopre 27043
Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopre  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  (
( T `  A
)  .ih  A )  e.  RR )

Proof of Theorem hmopre
StepHypRef Expression
1 hmop 27042 . . . 4  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H  /\  A  e. 
~H )  ->  ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
) )
213anidm23 1285 . . 3  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  ( A  .ih  ( T `  A ) )  =  ( ( T `  A )  .ih  A
) )
32eqcomd 2462 . 2  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  (
( T `  A
)  .ih  A )  =  ( A  .ih  ( T `  A ) ) )
4 hmopf 26994 . . . 4  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
54ffvelrnda 6007 . . 3  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  ( T `  A )  e.  ~H )
6 hire 26212 . . 3  |-  ( ( ( T `  A
)  e.  ~H  /\  A  e.  ~H )  ->  ( ( ( T `
 A )  .ih  A )  e.  RR  <->  ( ( T `  A )  .ih  A )  =  ( A  .ih  ( T `
 A ) ) ) )
75, 6sylancom 665 . 2  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  (
( ( T `  A )  .ih  A
)  e.  RR  <->  ( ( T `  A )  .ih  A )  =  ( A  .ih  ( T `
 A ) ) ) )
83, 7mpbird 232 1  |-  ( ( T  e.  HrmOp  /\  A  e.  ~H )  ->  (
( T `  A
)  .ih  A )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   ` cfv 5570  (class class class)co 6270   RRcr 9480   ~Hchil 26037    .ih csp 26040   HrmOpcho 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-hilex 26117  ax-hfi 26197  ax-his1 26200
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-2 10590  df-cj 13017  df-re 13018  df-im 13019  df-hmop 26964
This theorem is referenced by:  leop2  27244  leopadd  27252  leopmuli  27253  leoptri  27256  leoptr  27257  leopnmid  27258
  Copyright terms: Public domain W3C validator