HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmoplin Structured version   Unicode version

Theorem hmoplin 26733
Description: A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmoplin  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)

Proof of Theorem hmoplin
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 26665 . 2  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
2 simplll 759 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  T  e.  HrmOp )
3 hvmulcl 25802 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
4 hvaddcl 25801 . . . . . . . . . . 11  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
53, 4sylan 471 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
65adantll 713 . . . . . . . . 9  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e. 
~H )
76adantr 465 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
8 simpr 461 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  w  e.  ~H )
9 hmop 26713 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  (
( x  .h  y
)  +h  z )  e.  ~H  /\  w  e.  ~H )  ->  (
( ( x  .h  y )  +h  z
)  .ih  ( T `  w ) )  =  ( ( T `  ( ( x  .h  y )  +h  z
) )  .ih  w
) )
109eqcomd 2451 . . . . . . . 8  |-  ( ( T  e.  HrmOp  /\  (
( x  .h  y
)  +h  z )  e.  ~H  /\  w  e.  ~H )  ->  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z )  .ih  ( T `  w ) ) )
112, 7, 8, 10syl3anc 1229 . . . . . . 7  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z
)  .ih  ( T `  w ) ) )
12 simprl 756 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
1312ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  x  e.  CC )
14 simprr 757 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
1514ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  y  e.  ~H )
16 simplr 755 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  z  e.  ~H )
171ffvelrnda 6016 . . . . . . . . . 10  |-  ( ( T  e.  HrmOp  /\  w  e.  ~H )  ->  ( T `  w )  e.  ~H )
1817adantlr 714 . . . . . . . . 9  |-  ( ( ( T  e.  HrmOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  w )  e.  ~H )
1918adantllr 718 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  w )  e.  ~H )
20 hiassdi 25880 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  ( T `  w
)  e.  ~H )
)  ->  ( (
( x  .h  y
)  +h  z ) 
.ih  ( T `  w ) )  =  ( ( x  x.  ( y  .ih  ( T `  w )
) )  +  ( z  .ih  ( T `
 w ) ) ) )
2113, 15, 16, 19, 20syl22anc 1230 . . . . . . 7  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  y )  +h  z )  .ih  ( T `  w ) )  =  ( ( x  x.  ( y 
.ih  ( T `  w ) ) )  +  ( z  .ih  ( T `  w ) ) ) )
221ffvelrnda 6016 . . . . . . . . . . 11  |-  ( ( T  e.  HrmOp  /\  y  e.  ~H )  ->  ( T `  y )  e.  ~H )
2322adantrl 715 . . . . . . . . . 10  |-  ( ( T  e.  HrmOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  y )  e.  ~H )
2423ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  y )  e.  ~H )
251ffvelrnda 6016 . . . . . . . . . . 11  |-  ( ( T  e.  HrmOp  /\  z  e.  ~H )  ->  ( T `  z )  e.  ~H )
2625adantr 465 . . . . . . . . . 10  |-  ( ( ( T  e.  HrmOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
2726adantllr 718 . . . . . . . . 9  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
28 hiassdi 25880 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( T `  y
)  e.  ~H )  /\  ( ( T `  z )  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) 
.ih  w )  =  ( ( x  x.  ( ( T `  y )  .ih  w
) )  +  ( ( T `  z
)  .ih  w )
) )
2913, 24, 27, 8, 28syl22anc 1230 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  =  ( ( x  x.  (
( T `  y
)  .ih  w )
)  +  ( ( T `  z ) 
.ih  w ) ) )
30 hmop 26713 . . . . . . . . . . . . . 14  |-  ( ( T  e.  HrmOp  /\  y  e.  ~H  /\  w  e. 
~H )  ->  (
y  .ih  ( T `  w ) )  =  ( ( T `  y )  .ih  w
) )
3130eqcomd 2451 . . . . . . . . . . . . 13  |-  ( ( T  e.  HrmOp  /\  y  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  y
)  .ih  w )  =  ( y  .ih  ( T `  w ) ) )
32313expa 1197 . . . . . . . . . . . 12  |-  ( ( ( T  e.  HrmOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 y )  .ih  w )  =  ( y  .ih  ( T `
 w ) ) )
3332oveq2d 6297 . . . . . . . . . . 11  |-  ( ( ( T  e.  HrmOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( T `  w ) ) ) )
3433adantlrl 719 . . . . . . . . . 10  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `
 y )  .ih  w ) )  =  ( x  x.  (
y  .ih  ( T `  w ) ) ) )
3534adantlr 714 . . . . . . . . 9  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( T `  w ) ) ) )
36 hmop 26713 . . . . . . . . . . . 12  |-  ( ( T  e.  HrmOp  /\  z  e.  ~H  /\  w  e. 
~H )  ->  (
z  .ih  ( T `  w ) )  =  ( ( T `  z )  .ih  w
) )
3736eqcomd 2451 . . . . . . . . . . 11  |-  ( ( T  e.  HrmOp  /\  z  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  z
)  .ih  w )  =  ( z  .ih  ( T `  w ) ) )
38373expa 1197 . . . . . . . . . 10  |-  ( ( ( T  e.  HrmOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( T `
 w ) ) )
3938adantllr 718 . . . . . . . . 9  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( T `
 w ) ) )
4035, 39oveq12d 6299 . . . . . . . 8  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( ( T `
 y )  .ih  w ) )  +  ( ( T `  z )  .ih  w
) )  =  ( ( x  x.  (
y  .ih  ( T `  w ) ) )  +  ( z  .ih  ( T `  w ) ) ) )
4129, 40eqtr2d 2485 . . . . . . 7  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( y  .ih  ( T `  w ) ) )  +  ( z  .ih  ( T `
 w ) ) )  =  ( ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) 
.ih  w ) )
4211, 21, 413eqtrd 2488 . . . . . 6  |-  ( ( ( ( T  e. 
HrmOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
4342ralrimiva 2857 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  A. w  e.  ~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
44 ffvelrn 6014 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
455, 44sylan2 474 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
4645anassrs 648 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
47 ffvelrn 6014 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
48 hvmulcl 25802 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( T `  y )  e.  ~H )  -> 
( x  .h  ( T `  y )
)  e.  ~H )
4947, 48sylan2 474 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( T : ~H --> ~H  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5049an12s 801 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5150adantr 465 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( x  .h  ( T `  y )
)  e.  ~H )
52 ffvelrn 6014 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
5352adantlr 714 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
54 hvaddcl 25801 . . . . . . . 8  |-  ( ( ( x  .h  ( T `  y )
)  e.  ~H  /\  ( T `  z )  e.  ~H )  -> 
( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
5551, 53, 54syl2anc 661 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
56 hial2eq 25895 . . . . . . 7  |-  ( ( ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H  /\  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
5746, 55, 56syl2anc 661 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
581, 57sylanl1 650 . . . . 5  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( A. w  e.  ~H  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
5943, 58mpbid 210 . . . 4  |-  ( ( ( T  e.  HrmOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( T `
 ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
) )
6059ralrimiva 2857 . . 3  |-  ( ( T  e.  HrmOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )
6160ralrimivva 2864 . 2  |-  ( T  e.  HrmOp  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
62 ellnop 26649 . 2  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
631, 61, 62sylanbrc 664 1  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493    + caddc 9498    x. cmul 9500   ~Hchil 25708    +h cva 25709    .h csm 25710    .ih csp 25711   LinOpclo 25736   HrmOpcho 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-hilex 25788  ax-hfvadd 25789  ax-hvcom 25790  ax-hvass 25791  ax-hv0cl 25792  ax-hvaddid 25793  ax-hfvmul 25794  ax-hvmulid 25795  ax-hvdistr2 25798  ax-hvmul0 25799  ax-hfi 25868  ax-his2 25872  ax-his3 25873  ax-his4 25874
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-po 4790  df-so 4791  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-ltxr 9636  df-sub 9812  df-neg 9813  df-hvsub 25760  df-lnop 26632  df-hmop 26635
This theorem is referenced by:  0lnop  26775  hmopbdoptHIL  26779  leoptri  26927  leopnmid  26929  nmopleid  26930  opsqrlem1  26931  opsqrlem6  26936  pjlnopi  26938  hmopidmchi  26942  hmopidmpji  26943
  Copyright terms: Public domain W3C validator