HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   Unicode version

Theorem hmopidmchi 27885
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1  |-  T  e. 
HrmOp
hmopidmch.2  |-  ( T  o.  T )  =  T
Assertion
Ref Expression
hmopidmchi  |-  ran  T  e.  CH

Proof of Theorem hmopidmchi
Dummy variables  f 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4  |-  T  e. 
HrmOp
2 hmoplin 27676 . . . 4  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
31, 2ax-mp 5 . . 3  |-  T  e. 
LinOp
43rnelshi 27793 . 2  |-  ran  T  e.  SH
5 eqid 2471 . . . . . . . 8  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
65hilxmet 26929 . . . . . . 7  |-  ( normh  o. 
-h  )  e.  ( *Met `  ~H )
7 eqid 2471 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
87methaus 21613 . . . . . . 7  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  Haus )
96, 8mp1i 13 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  Haus )
10 eqid 2471 . . . . . . . . . . . 12  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
1110, 5hhims 26906 . . . . . . . . . . . 12  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
1210, 11, 7hhlm 26933 . . . . . . . . . . 11  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
13 resss 5134 . . . . . . . . . . 11  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1412, 13eqsstri 3448 . . . . . . . . . 10  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1514ssbri 4438 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  f ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) x )
1615adantl 473 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) x )
177mopntopon 21532 . . . . . . . . . 10  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  (TopOn `  ~H ) )
186, 17mp1i 13 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( MetOpen `  ( normh  o.  -h  ) )  e.  (TopOn `  ~H ) )
193lnopfi 27703 . . . . . . . . . . . 12  |-  T : ~H
--> ~H
2019a1i 11 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T : ~H --> ~H )
2120feqmptd 5932 . . . . . . . . . 10  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  T  =  ( y  e.  ~H  |->  ( T `  y ) ) )
22 hmopbdoptHIL 27722 . . . . . . . . . . . . 13  |-  ( T  e.  HrmOp  ->  T  e.  BndLinOp )
231, 22ax-mp 5 . . . . . . . . . . . 12  |-  T  e.  BndLinOp
24 lnopcnbd 27770 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( T  e.  ConOp 
<->  T  e.  BndLinOp ) )
253, 24ax-mp 5 . . . . . . . . . . . 12  |-  ( T  e.  ConOp 
<->  T  e.  BndLinOp )
2623, 25mpbir 214 . . . . . . . . . . 11  |-  T  e. 
ConOp
275, 7hhcno 27638 . . . . . . . . . . 11  |-  ConOp  =  ( ( MetOpen `  ( normh  o. 
-h  ) )  Cn  ( MetOpen `  ( normh  o. 
-h  ) ) )
2826, 27eleqtri 2547 . . . . . . . . . 10  |-  T  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) )
2921, 28syl6eqelr 2558 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( T `  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3018cnmptid 20753 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  y )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3110hhnv 26899 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3210hhvs 26904 . . . . . . . . . . 11  |-  -h  =  ( -v `  <. <.  +h  ,  .h  >. ,  normh >. )
3311, 7, 32vmcn 26416 . . . . . . . . . 10  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  -h  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( MetOpen
`  ( normh  o.  -h  ) ) ) )
3431, 33mp1i 13 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  -h  e.  (
( ( MetOpen `  ( normh  o.  -h  ) ) 
tX  ( MetOpen `  ( normh  o.  -h  ) ) )  Cn  ( MetOpen `  ( normh  o.  -h  )
) ) )
3518, 29, 30, 34cnmpt12f 20758 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  e.  ( ( MetOpen `  ( normh  o.  -h  ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
3616, 35lmcn 20398 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  x ) )
37 simpl 464 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ran  T )
384shssii 26947 . . . . . . . . . . . . . 14  |-  ran  T  C_ 
~H
39 fss 5749 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  ran  T  C_  ~H )  ->  f : NN --> ~H )
4037, 38, 39sylancl 675 . . . . . . . . . . . . 13  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  f : NN --> ~H )
4140ffvelrnda 6037 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ~H )
42 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
43 id 22 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  y  =  ( f `  k ) )
4442, 43oveq12d 6326 . . . . . . . . . . . . 13  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 ( f `  k ) )  -h  ( f `  k
) ) )
45 eqid 2471 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  =  ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )
46 ovex 6336 . . . . . . . . . . . . 13  |-  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) )  e. 
_V
4744, 45, 46fvmpt 5963 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
4841, 47syl 17 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  ( ( T `  ( f `
 k ) )  -h  ( f `  k ) ) )
49 ffn 5739 . . . . . . . . . . . . . . . 16  |-  ( T : ~H --> ~H  ->  T  Fn  ~H )
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15  |-  T  Fn  ~H
51 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  ( T `  y )  =  ( T `  ( T `  x ) ) )
52 id 22 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( T `  x )  ->  y  =  ( T `  x ) )
5351, 52eqeq12d 2486 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( T `  x )  ->  (
( T `  y
)  =  y  <->  ( T `  ( T `  x
) )  =  ( T `  x ) ) )
5453ralrn 6040 . . . . . . . . . . . . . . 15  |-  ( T  Fn  ~H  ->  ( A. y  e.  ran  T ( T `  y
)  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) ) )
5550, 54ax-mp 5 . . . . . . . . . . . . . 14  |-  ( A. y  e.  ran  T ( T `  y )  =  y  <->  A. x  e.  ~H  ( T `  ( T `  x ) )  =  ( T `
 x ) )
56 hmopidmch.2 . . . . . . . . . . . . . . . 16  |-  ( T  o.  T )  =  T
5756fveq1i 5880 . . . . . . . . . . . . . . 15  |-  ( ( T  o.  T ) `
 x )  =  ( T `  x
)
5819, 19hocoi 27498 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~H  ->  (
( T  o.  T
) `  x )  =  ( T `  ( T `  x ) ) )
5957, 58syl5reqr 2520 . . . . . . . . . . . . . 14  |-  ( x  e.  ~H  ->  ( T `  ( T `  x ) )  =  ( T `  x
) )
6055, 59mprgbir 2771 . . . . . . . . . . . . 13  |-  A. y  e.  ran  T ( T `
 y )  =  y
61 ffvelrn 6035 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( f `  k )  e.  ran  T )
6261adantlr 729 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
f `  k )  e.  ran  T )
6342, 43eqeq12d 2486 . . . . . . . . . . . . . 14  |-  ( y  =  ( f `  k )  ->  (
( T `  y
)  =  y  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6463rspccv 3133 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  T ( T `  y )  =  y  ->  (
( f `  k
)  e.  ran  T  ->  ( T `  (
f `  k )
)  =  ( f `
 k ) ) )
6560, 62, 64mpsyl 64 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  =  ( f `  k
) )
6665, 41eqeltrd 2549 . . . . . . . . . . . . 13  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  ( T `  ( f `  k ) )  e. 
~H )
67 hvsubeq0 26802 . . . . . . . . . . . . 13  |-  ( ( ( T `  (
f `  k )
)  e.  ~H  /\  ( f `  k
)  e.  ~H )  ->  ( ( ( T `
 ( f `  k ) )  -h  ( f `  k
) )  =  0h  <->  ( T `  ( f `
 k ) )  =  ( f `  k ) ) )
6866, 41, 67syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( T `  ( f `  k
) )  -h  (
f `  k )
)  =  0h  <->  ( T `  ( f `  k
) )  =  ( f `  k ) ) )
6965, 68mpbird 240 . . . . . . . . . . 11  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( T `  (
f `  k )
)  -h  ( f `
 k ) )  =  0h )
7048, 69eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  (
f `  k )
)  =  0h )
71 fvco3 5957 . . . . . . . . . . 11  |-  ( ( f : NN --> ran  T  /\  k  e.  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) ) `  ( f `  k
) ) )
7271adantlr 729 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) ) `  ( f `
 k ) ) )
73 ax-hv0cl 26737 . . . . . . . . . . . . 13  |-  0h  e.  ~H
7473elexi 3041 . . . . . . . . . . . 12  |-  0h  e.  _V
7574fvconst2 6136 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7675adantl 473 . . . . . . . . . 10  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( NN  X.  { 0h } ) `  k
)  =  0h )
7770, 72, 763eqtr4d 2515 . . . . . . . . 9  |-  ( ( ( f : NN --> ran  T  /\  f  ~~>v  x )  /\  k  e.  NN )  ->  (
( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f ) `  k
)  =  ( ( NN  X.  { 0h } ) `  k
) )
7877ralrimiva 2809 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f ) `  k )  =  ( ( NN  X.  { 0h } ) `  k
) )
79 ovex 6336 . . . . . . . . . . 11  |-  ( ( T `  y )  -h  y )  e. 
_V
8079, 45fnmpti 5716 . . . . . . . . . 10  |-  ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  Fn  ~H
81 fnfco 5760 . . . . . . . . . 10  |-  ( ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y
) )  Fn  ~H  /\  f : NN --> ~H )  ->  ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN )
8280, 40, 81sylancr 676 . . . . . . . . 9  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  Fn  NN )
8374fconst 5782 . . . . . . . . . 10  |-  ( NN 
X.  { 0h }
) : NN --> { 0h }
84 ffn 5739 . . . . . . . . . 10  |-  ( ( NN  X.  { 0h } ) : NN --> { 0h }  ->  ( NN  X.  { 0h }
)  Fn  NN )
8583, 84ax-mp 5 . . . . . . . . 9  |-  ( NN 
X.  { 0h }
)  Fn  NN
86 eqfnfv 5991 . . . . . . . . 9  |-  ( ( ( ( y  e. 
~H  |->  ( ( T `
 y )  -h  y ) )  o.  f )  Fn  NN  /\  ( NN  X.  { 0h } )  Fn  NN )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8782, 85, 86sylancl 675 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } )  <->  A. k  e.  NN  ( ( ( y  e.  ~H  |->  ( ( T `  y
)  -h  y ) )  o.  f ) `
 k )  =  ( ( NN  X.  { 0h } ) `  k ) ) )
8878, 87mpbird 240 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) )  o.  f )  =  ( NN  X.  { 0h } ) )
89 vex 3034 . . . . . . . . . 10  |-  x  e. 
_V
9089hlimveci 26924 . . . . . . . . 9  |-  ( f 
~~>v  x  ->  x  e.  ~H )
9190adantl 473 . . . . . . . 8  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ~H )
92 fveq2 5879 . . . . . . . . . 10  |-  ( y  =  x  ->  ( T `  y )  =  ( T `  x ) )
93 id 22 . . . . . . . . . 10  |-  ( y  =  x  ->  y  =  x )
9492, 93oveq12d 6326 . . . . . . . . 9  |-  ( y  =  x  ->  (
( T `  y
)  -h  y )  =  ( ( T `
 x )  -h  x ) )
95 ovex 6336 . . . . . . . . 9  |-  ( ( T `  x )  -h  x )  e. 
_V
9694, 45, 95fvmpt 5963 . . . . . . . 8  |-  ( x  e.  ~H  ->  (
( y  e.  ~H  |->  ( ( T `  y )  -h  y
) ) `  x
)  =  ( ( T `  x )  -h  x ) )
9791, 96syl 17 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( y  e.  ~H  |->  ( ( T `  y )  -h  y ) ) `
 x )  =  ( ( T `  x )  -h  x
) )
9836, 88, 973brtr3d 4425 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( ( T `  x )  -h  x ) )
9973a1i 11 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  0h  e.  ~H )
100 1zzd 10992 . . . . . . 7  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  1  e.  ZZ )
101 nnuz 11218 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
102101lmconst 20354 . . . . . . 7  |-  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )  /\  0h  e.  ~H  /\  1  e.  ZZ )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) 0h )
10318, 99, 100, 102syl3anc 1292 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( NN  X.  { 0h } ) ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) 0h )
1049, 98, 103lmmo 20473 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( T `
 x )  -h  x )  =  0h )
10519ffvelrni 6036 . . . . . . 7  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
10691, 105syl 17 . . . . . 6  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ~H )
107 hvsubeq0 26802 . . . . . 6  |-  ( ( ( T `  x
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( ( T `
 x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
108106, 91, 107syl2anc 673 . . . . 5  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( ( ( T `  x )  -h  x )  =  0h  <->  ( T `  x )  =  x ) )
109104, 108mpbid 215 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  =  x )
110 fnfvelrn 6034 . . . . 5  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ran  T
)
11150, 91, 110sylancr 676 . . . 4  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  ( T `  x )  e.  ran  T )
112109, 111eqeltrrd 2550 . . 3  |-  ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
113112gen2 1678 . 2  |-  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T )
114 isch2 26957 . 2  |-  ( ran 
T  e.  CH  <->  ( ran  T  e.  SH  /\  A. f A. x ( ( f : NN --> ran  T  /\  f  ~~>v  x )  ->  x  e.  ran  T ) ) )
1154, 113, 114mpbir2an 934 1  |-  ran  T  e.  CH
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452    e. wcel 1904   A.wral 2756    C_ wss 3390   {csn 3959   <.cop 3965   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   ran crn 4840    |` cres 4841    o. ccom 4843    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   1c1 9558   NNcn 10631   ZZcz 10961   *Metcxmt 19032   MetOpencmopn 19037  TopOnctopon 19995    Cn ccn 20317   ~~> tclm 20319   Hauscha 20401    tX ctx 20652   NrmCVeccnv 26284   ~Hchil 26653    +h cva 26654    .h csm 26655   normhcno 26657   0hc0v 26658    -h cmv 26659    ~~>v chli 26661   SHcsh 26662   CHcch 26663   ConOpccop 26680   LinOpclo 26681   BndLinOpcbo 26682   HrmOpcho 26684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-dc 8894  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637  ax-hilex 26733  ax-hfvadd 26734  ax-hvcom 26735  ax-hvass 26736  ax-hv0cl 26737  ax-hvaddid 26738  ax-hfvmul 26739  ax-hvmulid 26740  ax-hvmulass 26741  ax-hvdistr1 26742  ax-hvdistr2 26743  ax-hvmul0 26744  ax-hfi 26813  ax-his1 26816  ax-his2 26817  ax-his3 26818  ax-his4 26819  ax-hcompl 26936
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-cn 20320  df-cnp 20321  df-lm 20322  df-t1 20407  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-fcls 21034  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-cfil 22303  df-cau 22304  df-cmet 22305  df-grpo 26000  df-gid 26001  df-ginv 26002  df-gdiv 26003  df-ablo 26091  df-subgo 26111  df-vc 26246  df-nv 26292  df-va 26295  df-ba 26296  df-sm 26297  df-0v 26298  df-vs 26299  df-nmcv 26300  df-ims 26301  df-dip 26418  df-ssp 26442  df-lno 26466  df-nmoo 26467  df-blo 26468  df-0o 26469  df-ph 26535  df-cbn 26586  df-hlo 26619  df-hnorm 26702  df-hba 26703  df-hvsub 26705  df-hlim 26706  df-hcau 26707  df-sh 26941  df-ch 26955  df-oc 26986  df-ch0 26987  df-shs 27042  df-pjh 27129  df-h0op 27482  df-nmop 27573  df-cnop 27574  df-lnop 27575  df-bdop 27576  df-unop 27577  df-hmop 27578
This theorem is referenced by:  hmopidmpji  27886  hmopidmch  27887
  Copyright terms: Public domain W3C validator