HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopex Structured version   Unicode version

Theorem hmopex 26617
Description: The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopex  |-  HrmOp  e.  _V

Proof of Theorem hmopex
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 ovex 6320 . 2  |-  ( ~H 
^m  ~H )  e.  _V
2 hmopf 26616 . . . 4  |-  ( t  e.  HrmOp  ->  t : ~H
--> ~H )
3 ax-hilex 25739 . . . . 5  |-  ~H  e.  _V
43, 3elmap 7459 . . . 4  |-  ( t  e.  ( ~H  ^m  ~H )  <->  t : ~H --> ~H )
52, 4sylibr 212 . . 3  |-  ( t  e.  HrmOp  ->  t  e.  ( ~H  ^m  ~H )
)
65ssriv 3513 . 2  |-  HrmOp  C_  ( ~H  ^m  ~H )
71, 6ssexi 4598 1  |-  HrmOp  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767   _Vcvv 3118   -->wf 5590  (class class class)co 6295    ^m cmap 7432   ~Hchil 25659   HrmOpcho 25690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-hilex 25739
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-hmop 26586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator