MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoimaf1o Structured version   Unicode version

Theorem hmeoimaf1o 19348
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1  |-  G  =  ( x  e.  J  |->  ( F " x
) )
Assertion
Ref Expression
hmeoimaf1o  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Distinct variable groups:    x, F    x, J    x, K
Allowed substitution hint:    G( x)

Proof of Theorem hmeoimaf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2  |-  G  =  ( x  e.  J  |->  ( F " x
) )
2 hmeoima 19343 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  x  e.  J )  ->  ( F " x )  e.  K )
3 hmeocn 19338 . . 3  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
4 cnima 18874 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
53, 4sylan 471 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
6 eqid 2443 . . . . . . 7  |-  U. J  =  U. J
7 eqid 2443 . . . . . . 7  |-  U. K  =  U. K
86, 7hmeof1o 19342 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F : U. J -1-1-onto-> U. K )
98adantr 465 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-onto-> U. K )
10 f1of1 5645 . . . . 5  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -1-1-> U. K )
119, 10syl 16 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -1-1-> U. K )
12 elssuni 4126 . . . . 5  |-  ( x  e.  J  ->  x  C_ 
U. J )
1312ad2antrl 727 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  x  C_  U. J
)
14 cnvimass 5194 . . . . 5  |-  ( `' F " y ) 
C_  dom  F
15 f1dm 5615 . . . . . 6  |-  ( F : U. J -1-1-> U. K  ->  dom  F  =  U. J )
1611, 15syl 16 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  dom  F  = 
U. J )
1714, 16syl5sseq 3409 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( `' F " y )  C_  U. J )
18 f1imaeq 5983 . . . 4  |-  ( ( F : U. J -1-1-> U. K  /\  ( x 
C_  U. J  /\  ( `' F " y ) 
C_  U. J ) )  ->  ( ( F
" x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
1911, 13, 17, 18syl12anc 1216 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  x  =  ( `' F " y ) ) )
20 f1ofo 5653 . . . . . . 7  |-  ( F : U. J -1-1-onto-> U. K  ->  F : U. J -onto-> U. K )
219, 20syl 16 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  F : U. J -onto-> U. K )
22 elssuni 4126 . . . . . . 7  |-  ( y  e.  K  ->  y  C_ 
U. K )
2322ad2antll 728 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  y  C_  U. K )
24 foimacnv 5663 . . . . . 6  |-  ( ( F : U. J -onto-> U. K  /\  y  C_ 
U. K )  -> 
( F " ( `' F " y ) )  =  y )
2521, 23, 24syl2anc 661 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( F " ( `' F "
y ) )  =  y )
2625eqeq2d 2454 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  ( F "
x )  =  y ) )
27 eqcom 2445 . . . 4  |-  ( ( F " x )  =  y  <->  y  =  ( F " x ) )
2826, 27syl6bb 261 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( ( F " x )  =  ( F " ( `' F " y ) )  <->  y  =  ( F " x ) ) )
2919, 28bitr3d 255 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  (
x  e.  J  /\  y  e.  K )
)  ->  ( x  =  ( `' F " y )  <->  y  =  ( F " x ) ) )
301, 2, 5, 29f1o2d 6317 1  |-  ( F  e.  ( J Homeo K )  ->  G : J
-1-1-onto-> K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3333   U.cuni 4096    e. cmpt 4355   `'ccnv 4844   dom cdm 4845   "cima 4848   -1-1->wf1 5420   -onto->wfo 5421   -1-1-onto->wf1o 5422  (class class class)co 6096    Cn ccn 18833   Homeochmeo 19331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221  df-top 18508  df-topon 18511  df-cn 18836  df-hmeo 19333
This theorem is referenced by:  hmphen  19363
  Copyright terms: Public domain W3C validator