Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat5N Structured version   Unicode version

Theorem hlrelat5N 32639
Description: An atomistic lattice with 0 is relatively atomic, using the definition in Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 21-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlrelat5.b  |-  B  =  ( Base `  K
)
hlrelat5.l  |-  .<_  =  ( le `  K )
hlrelat5.s  |-  .<  =  ( lt `  K )
hlrelat5.j  |-  .\/  =  ( join `  K )
hlrelat5.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat5N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  p  .<_  Y ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p
Allowed substitution hints:    .< ( p)    .\/ ( p)

Proof of Theorem hlrelat5N
StepHypRef Expression
1 hlrelat5.b . . . 4  |-  B  =  ( Base `  K
)
2 hlrelat5.l . . . 4  |-  .<_  =  ( le `  K )
3 hlrelat5.s . . . 4  |-  .<  =  ( lt `  K )
4 hlrelat5.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlrelat1 32638 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
65imp 429 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) )
7 hllat 32602 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
8 id 22 . . . . . . . 8  |-  ( X  e.  B  ->  X  e.  B )
91, 4atbase 32528 . . . . . . . 8  |-  ( p  e.  A  ->  p  e.  B )
10 ovex 6105 . . . . . . . . . . . 12  |-  ( X 
.\/  p )  e. 
_V
1110a1i 11 . . . . . . . . . . 11  |-  ( p  e.  B  ->  ( X  .\/  p )  e. 
_V )
122, 3pltval 15113 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  p )  e.  _V )  -> 
( X  .<  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
1311, 12syl3an3 1246 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
14 hlrelat5.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
151, 2, 14latlej1 15213 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  X  .<_  ( X  .\/  p ) )
1615biantrurd 505 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  =/=  ( X  .\/  p )  <->  ( X  .<_  ( X  .\/  p
)  /\  X  =/=  ( X  .\/  p ) ) ) )
1713, 16bitr4d 256 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  X  =/=  ( X  .\/  p ) ) )
181, 2, 14latleeqj1 15216 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  p  e.  B  /\  X  e.  B )  ->  ( p  .<_  X  <->  ( p  .\/  X )  =  X ) )
19183com23 1186 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( p  .<_  X  <->  ( p  .\/  X )  =  X ) )
201, 14latjcom 15212 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .\/  p
)  =  ( p 
.\/  X ) )
2120eqeq1d 2441 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( ( X  .\/  p )  =  X  <-> 
( p  .\/  X
)  =  X ) )
2219, 21bitr4d 256 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( p  .<_  X  <->  ( X  .\/  p )  =  X ) )
2322notbid 294 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  X  <->  -.  ( X  .\/  p
)  =  X ) )
24 necom 2683 . . . . . . . . . . 11  |-  ( X  =/=  ( X  .\/  p )  <->  ( X  .\/  p )  =/=  X
)
25 df-ne 2598 . . . . . . . . . . 11  |-  ( ( X  .\/  p )  =/=  X  <->  -.  ( X  .\/  p )  =  X )
2624, 25bitri 249 . . . . . . . . . 10  |-  ( X  =/=  ( X  .\/  p )  <->  -.  ( X  .\/  p )  =  X )
2723, 26syl6bbr 263 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  X  <-> 
X  =/=  ( X 
.\/  p ) ) )
2817, 27bitr4d 256 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( X  .<  ( X  .\/  p )  <->  -.  p  .<_  X ) )
297, 8, 9, 28syl3an 1253 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( X  .<  ( X  .\/  p )  <->  -.  p  .<_  X ) )
30293expa 1180 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  p  e.  A
)  ->  ( X  .<  ( X  .\/  p
)  <->  -.  p  .<_  X ) )
3130anbi1d 697 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  p  e.  A
)  ->  ( ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
3231rexbidva 2722 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
33323adant3 1001 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p )  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
3433adantr 462 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  A  ( X  .<  ( X  .\/  p
)  /\  p  .<_  Y )  <->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
356, 34mpbird 232 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  p  .<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   E.wrex 2706   _Vcvv 2962   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   Basecbs 14157   lecple 14228   ltcplt 15094   joincjn 15097   Latclat 15198   Atomscatm 32502   HLchlt 32589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-poset 15099  df-plt 15111  df-lub 15127  df-glb 15128  df-join 15129  df-meet 15130  df-p0 15192  df-lat 15199  df-clat 15261  df-oposet 32415  df-ol 32417  df-oml 32418  df-covers 32505  df-ats 32506  df-atl 32537  df-cvlat 32561  df-hlat 32590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator