Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat3 Structured version   Unicode version

Theorem hlrelat3 34609
Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat 34599. (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
hlrelat3.b  |-  B  =  ( Base `  K
)
hlrelat3.l  |-  .<_  =  ( le `  K )
hlrelat3.s  |-  .<  =  ( lt `  K )
hlrelat3.j  |-  .\/  =  ( join `  K )
hlrelat3.c  |-  C  =  (  <o  `  K )
hlrelat3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X C ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    .< , p    X, p    Y, p
Allowed substitution hints:    C( p)    .\/ ( p)

Proof of Theorem hlrelat3
StepHypRef Expression
1 hlrelat3.b . . . 4  |-  B  =  ( Base `  K
)
2 hlrelat3.l . . . 4  |-  .<_  =  ( le `  K )
3 hlrelat3.s . . . 4  |-  .<  =  ( lt `  K )
4 hlrelat3.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlrelat1 34597 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
65imp 429 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) )
7 simp3l 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  -.  p  .<_  X )
8 simp1l1 1089 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  K  e.  HL )
9 simp1l2 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  X  e.  B
)
10 simp2 997 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  p  e.  A
)
11 hlrelat3.j . . . . . . . 8  |-  .\/  =  ( join `  K )
12 hlrelat3.c . . . . . . . 8  |-  C  =  (  <o  `  K )
131, 2, 11, 12, 4cvr1 34607 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  ->  ( -.  p  .<_  X  <-> 
X C ( X 
.\/  p ) ) )
148, 9, 10, 13syl3anc 1228 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  ( -.  p  .<_  X  <->  X C ( X 
.\/  p ) ) )
157, 14mpbid 210 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  X C ( X  .\/  p ) )
16 simp1l 1020 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) )
17 simp1r 1021 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  X  .<  Y )
182, 3pltle 15465 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X  .<_  Y ) )
1916, 17, 18sylc 60 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  X  .<_  Y )
20 simp3r 1025 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  p  .<_  Y )
21 hllat 34561 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
228, 21syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  K  e.  Lat )
231, 4atbase 34487 . . . . . . . 8  |-  ( p  e.  A  ->  p  e.  B )
2410, 23syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  p  e.  B
)
25 simp1l3 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  Y  e.  B
)
261, 2, 11latjle12 15566 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  p  e.  B  /\  Y  e.  B
) )  ->  (
( X  .<_  Y  /\  p  .<_  Y )  <->  ( X  .\/  p )  .<_  Y ) )
2722, 9, 24, 25, 26syl13anc 1230 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  ( ( X 
.<_  Y  /\  p  .<_  Y )  <->  ( X  .\/  p )  .<_  Y ) )
2819, 20, 27mpbi2and 919 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  ( X  .\/  p )  .<_  Y )
2915, 28jca 532 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A  /\  ( -.  p  .<_  X  /\  p  .<_  Y ) )  ->  ( X C ( X  .\/  p
)  /\  ( X  .\/  p )  .<_  Y ) )
30293exp 1195 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( p  e.  A  ->  ( ( -.  p  .<_  X  /\  p  .<_  Y )  -> 
( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) ) ) )
3130reximdvai 2939 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y )  ->  E. p  e.  A  ( X C ( X  .\/  p )  /\  ( X  .\/  p )  .<_  Y ) ) )
326, 31mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X C ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2818   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   ltcplt 15445   joincjn 15448   Latclat 15549    <o ccvr 34460   Atomscatm 34461   HLchlt 34548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549
This theorem is referenced by:  cvrval3  34610  athgt  34653  llnle  34715  lplnle  34737  llncvrlpln2  34754  lplncvrlvol2  34812  lhprelat3N  35237
  Copyright terms: Public domain W3C validator