Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat2 Structured version   Unicode version

Theorem hlrelat2 32940
Description: A consequence of relative atomicity. (chrelat2i 25737 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
hlrelat2.b  |-  B  =  ( Base `  K
)
hlrelat2.l  |-  .<_  =  ( le `  K )
hlrelat2.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p

Proof of Theorem hlrelat2
StepHypRef Expression
1 hllat 32901 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
2 hlrelat2.b . . . . 5  |-  B  =  ( Base `  K
)
3 hlrelat2.l . . . . 5  |-  .<_  =  ( le `  K )
4 eqid 2438 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
5 eqid 2438 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
62, 3, 4, 5latnlemlt 15246 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <-> 
( X ( meet `  K ) Y ) ( lt `  K
) X ) )
71, 6syl3an1 1251 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <-> 
( X ( meet `  K ) Y ) ( lt `  K
) X ) )
8 simp1 988 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
92, 5latmcl 15214 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
101, 9syl3an1 1251 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
11 simp2 989 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
12 eqid 2438 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
13 hlrelat2.a . . . . . . 7  |-  A  =  ( Atoms `  K )
142, 3, 4, 12, 13hlrelat 32939 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X ( meet `  K ) Y )  e.  B  /\  X  e.  B )  /\  ( X ( meet `  K
) Y ) ( lt `  K ) X )  ->  E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
1514ex 434 . . . . 5  |-  ( ( K  e.  HL  /\  ( X ( meet `  K
) Y )  e.  B  /\  X  e.  B )  ->  (
( X ( meet `  K ) Y ) ( lt `  K
) X  ->  E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) ) )
168, 10, 11, 15syl3anc 1218 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( lt
`  K ) X  ->  E. p  e.  A  ( ( X (
meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p )  /\  ( ( X (
meet `  K ) Y ) ( join `  K ) p ) 
.<_  X ) ) )
17 simpl1 991 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  HL )
1817, 1syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Lat )
1910adantr 465 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X
( meet `  K ) Y )  e.  B
)
202, 13atbase 32827 . . . . . . . . . 10  |-  ( p  e.  A  ->  p  e.  B )
2120adantl 466 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
22 simpl2 992 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  X  e.  B )
232, 3, 12latjle12 15224 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( ( X (
meet `  K ) Y )  e.  B  /\  p  e.  B  /\  X  e.  B
) )  ->  (
( ( X (
meet `  K ) Y )  .<_  X  /\  p  .<_  X )  <->  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
2418, 19, 21, 22, 23syl13anc 1220 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) 
.<_  X  /\  p  .<_  X )  <->  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X ) )
25 simpr 461 . . . . . . . 8  |-  ( ( ( X ( meet `  K ) Y ) 
.<_  X  /\  p  .<_  X )  ->  p  .<_  X )
2624, 25syl6bir 229 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X  ->  p  .<_  X ) )
2726adantld 467 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  p  .<_  X ) )
28 simpl3 993 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  Y  e.  B )
292, 3, 5latlem12 15240 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X ( meet `  K
) Y ) ) )
3018, 21, 22, 28, 29syl13anc 1220 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  p  .<_  Y )  <->  p  .<_  ( X ( meet `  K
) Y ) ) )
3130notbid 294 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  ( p  .<_  X  /\  p  .<_  Y )  <->  -.  p  .<_  ( X ( meet `  K ) Y ) ) )
322, 3, 4, 12latnle 15247 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( X ( meet `  K
) Y )  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  ( X ( meet `  K
) Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3318, 19, 21, 32syl3anc 1218 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  p  .<_  ( X (
meet `  K ) Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3431, 33bitrd 253 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( -.  ( p  .<_  X  /\  p  .<_  Y )  <->  ( X
( meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p ) ) )
3534, 24anbi12d 710 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  ( ( X (
meet `  K ) Y )  .<_  X  /\  p  .<_  X ) )  <-> 
( ( X (
meet `  K ) Y ) ( lt
`  K ) ( ( X ( meet `  K ) Y ) ( join `  K
) p )  /\  ( ( X (
meet `  K ) Y ) ( join `  K ) p ) 
.<_  X ) ) )
36 pm3.21 448 . . . . . . . . . 10  |-  ( p 
.<_  Y  ->  ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) ) )
37 orcom 387 . . . . . . . . . . 11  |-  ( ( ( p  .<_  X  /\  p  .<_  Y )  \/ 
-.  p  .<_  X )  <-> 
( -.  p  .<_  X  \/  ( p  .<_  X  /\  p  .<_  Y ) ) )
38 pm4.55 494 . . . . . . . . . . 11  |-  ( -.  ( -.  ( p 
.<_  X  /\  p  .<_  Y )  /\  p  .<_  X )  <->  ( ( p 
.<_  X  /\  p  .<_  Y )  \/  -.  p  .<_  X ) )
39 imor 412 . . . . . . . . . . 11  |-  ( ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) )  <-> 
( -.  p  .<_  X  \/  ( p  .<_  X  /\  p  .<_  Y ) ) )
4037, 38, 393bitr4ri 278 . . . . . . . . . 10  |-  ( ( p  .<_  X  ->  ( p  .<_  X  /\  p  .<_  Y ) )  <->  -.  ( -.  ( p 
.<_  X  /\  p  .<_  Y )  /\  p  .<_  X ) )
4136, 40sylib 196 . . . . . . . . 9  |-  ( p 
.<_  Y  ->  -.  ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  p  .<_  X ) )
4241con2i 120 . . . . . . . 8  |-  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  p  .<_  X )  ->  -.  p  .<_  Y )
4342adantrl 715 . . . . . . 7  |-  ( ( -.  ( p  .<_  X  /\  p  .<_  Y )  /\  ( ( X ( meet `  K
) Y )  .<_  X  /\  p  .<_  X ) )  ->  -.  p  .<_  Y )
4435, 43syl6bir 229 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  -.  p  .<_  Y ) )
4527, 44jcad 533 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
( X ( meet `  K ) Y ) ( lt `  K
) ( ( X ( meet `  K
) Y ) (
join `  K )
p )  /\  (
( X ( meet `  K ) Y ) ( join `  K
) p )  .<_  X )  ->  (
p  .<_  X  /\  -.  p  .<_  Y ) ) )
4645reximdva 2823 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( ( X ( meet `  K
) Y ) ( lt `  K ) ( ( X (
meet `  K ) Y ) ( join `  K ) p )  /\  ( ( X ( meet `  K
) Y ) (
join `  K )
p )  .<_  X )  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
4716, 46syld 44 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( lt
`  K ) X  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
487, 47sylbid 215 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  ->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
492, 3lattr 15218 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( p  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
5018, 21, 22, 28, 49syl13anc 1220 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
5150exp4b 607 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  e.  A  ->  ( p  .<_  X  -> 
( X  .<_  Y  ->  p  .<_  Y ) ) ) )
5251com34 83 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( p  e.  A  ->  ( X  .<_  Y  -> 
( p  .<_  X  ->  p  .<_  Y ) ) ) )
5352com23 78 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( p  e.  A  ->  ( p  .<_  X  ->  p  .<_  Y ) ) ) )
5453ralrimdv 2800 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
55 iman 424 . . . . . 6  |-  ( ( p  .<_  X  ->  p 
.<_  Y )  <->  -.  (
p  .<_  X  /\  -.  p  .<_  Y ) )
5655ralbii 2734 . . . . 5  |-  ( A. p  e.  A  (
p  .<_  X  ->  p  .<_  Y )  <->  A. p  e.  A  -.  (
p  .<_  X  /\  -.  p  .<_  Y ) )
57 ralnex 2720 . . . . 5  |-  ( A. p  e.  A  -.  ( p  .<_  X  /\  -.  p  .<_  Y )  <->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) )
5856, 57bitri 249 . . . 4  |-  ( A. p  e.  A  (
p  .<_  X  ->  p  .<_  Y )  <->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) )
5954, 58syl6ib 226 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  -.  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
6059con2d 115 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y )  ->  -.  X  .<_  Y ) )
6148, 60impbid 191 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  X  .<_  Y  <->  E. p  e.  A  ( p  .<_  X  /\  -.  p  .<_  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   E.wrex 2711   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   Basecbs 14166   lecple 14237   ltcplt 15103   joincjn 15106   meetcmee 15107   Latclat 15207   Atomscatm 32801   HLchlt 32888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-lat 15208  df-clat 15270  df-oposet 32714  df-ol 32716  df-oml 32717  df-covers 32804  df-ats 32805  df-atl 32836  df-cvlat 32860  df-hlat 32889
This theorem is referenced by:  lhpj1  33559
  Copyright terms: Public domain W3C validator