Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat Structured version   Unicode version

Theorem hlrelat 32768
Description: A Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 25703 analog.) (Contributed by NM, 4-Feb-2012.)
Hypotheses
Ref Expression
hlrelat5.b  |-  B  =  ( Base `  K
)
hlrelat5.l  |-  .<_  =  ( le `  K )
hlrelat5.s  |-  .<  =  ( lt `  K )
hlrelat5.j  |-  .\/  =  ( join `  K )
hlrelat5.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlrelat  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p    .< , p
Allowed substitution hint:    .\/ ( p)

Proof of Theorem hlrelat
StepHypRef Expression
1 hlrelat5.b . . . 4  |-  B  =  ( Base `  K
)
2 hlrelat5.l . . . 4  |-  .<_  =  ( le `  K )
3 hlrelat5.s . . . 4  |-  .<  =  ( lt `  K )
4 hlrelat5.a . . . 4  |-  A  =  ( Atoms `  K )
51, 2, 3, 4hlrelat1 32766 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) ) )
65imp 429 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y ) )
7 simpll1 1022 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  K  e.  HL )
8 hllat 32730 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
97, 8syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  K  e.  Lat )
10 simpll2 1023 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  X  e.  B )
111, 4atbase 32656 . . . . . 6  |-  ( p  e.  A  ->  p  e.  B )
1211adantl 463 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  p  e.  B )
13 hlrelat5.j . . . . . 6  |-  .\/  =  ( join `  K )
141, 2, 3, 13latnle 15251 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  p  e.  B )  ->  ( -.  p  .<_  X  <-> 
X  .<  ( X  .\/  p ) ) )
159, 10, 12, 14syl3anc 1213 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  ( -.  p  .<_  X  <->  X  .<  ( X  .\/  p ) ) )
162, 3pltle 15127 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X  .<_  Y ) )
1716imp 429 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  .<_  Y )
1817adantr 462 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  X  .<_  Y )
1918biantrurd 505 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  (
p  .<_  Y  <->  ( X  .<_  Y  /\  p  .<_  Y ) ) )
20 simpll3 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  Y  e.  B )
211, 2, 13latjle12 15228 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  p  e.  B  /\  Y  e.  B
) )  ->  (
( X  .<_  Y  /\  p  .<_  Y )  <->  ( X  .\/  p )  .<_  Y ) )
229, 10, 12, 20, 21syl13anc 1215 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  (
( X  .<_  Y  /\  p  .<_  Y )  <->  ( X  .\/  p )  .<_  Y ) )
2319, 22bitrd 253 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  (
p  .<_  Y  <->  ( X  .\/  p )  .<_  Y ) )
2415, 23anbi12d 705 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  /\  p  e.  A )  ->  (
( -.  p  .<_  X  /\  p  .<_  Y )  <-> 
( X  .<  ( X  .\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) ) )
2524rexbidva 2730 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  ( E. p  e.  A  ( -.  p  .<_  X  /\  p  .<_  Y )  <->  E. p  e.  A  ( X  .<  ( X  .\/  p
)  /\  ( X  .\/  p )  .<_  Y ) ) )
266, 25mpbid 210 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. p  e.  A  ( X  .<  ( X 
.\/  p )  /\  ( X  .\/  p ) 
.<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   E.wrex 2714   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Basecbs 14170   lecple 14241   ltcplt 15107   joincjn 15110   Latclat 15211   Atomscatm 32630   HLchlt 32717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718
This theorem is referenced by:  hlrelat2  32769  atle  32802  2atlt  32805
  Copyright terms: Public domain W3C validator