Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hloml Structured version   Unicode version

Theorem hloml 34029
Description: A Hilbert lattice is orthomodular. (Contributed by NM, 20-Oct-2011.)
Assertion
Ref Expression
hloml  |-  ( K  e.  HL  ->  K  e.  OML )

Proof of Theorem hloml
StepHypRef Expression
1 hlomcmcv 34028 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
21simp1d 1003 1  |-  ( K  e.  HL  ->  K  e.  OML )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1762   CLatccla 15583   OMLcoml 33847   CvLatclc 33937   HLchlt 34022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-iota 5542  df-fv 5587  df-ov 6278  df-hlat 34023
This theorem is referenced by:  hlol  34033  hlomcmat  34036  poml4N  34624  doca2N  35798  djajN  35809  dihoml4c  36048
  Copyright terms: Public domain W3C validator