Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Unicode version

Theorem hlmod1i 34652
Description: A version of the modular law pmod1i 34644 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b  |-  B  =  ( Base `  K
)
hlmod.l  |-  .<_  =  ( le `  K )
hlmod.j  |-  .\/  =  ( join `  K )
hlmod.m  |-  ./\  =  ( meet `  K )
hlmod.f  |-  F  =  ( pmap `  K
)
hlmod.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
hlmod1i  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3  |-  B  =  ( Base `  K
)
2 hlmod.l . . 3  |-  .<_  =  ( le `  K )
3 hllat 34160 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 1017 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  Lat )
5 simp21 1029 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  e.  B )
6 simp22 1030 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Y  e.  B )
7 hlmod.j . . . . . 6  |-  .\/  =  ( join `  K )
81, 7latjcl 15534 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
94, 5, 6, 8syl3anc 1228 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  Y )  e.  B
)
10 simp23 1031 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Z  e.  B )
11 hlmod.m . . . . 5  |-  ./\  =  ( meet `  K )
121, 11latmcl 15535 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
134, 9, 10, 12syl3anc 1228 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  e.  B )
141, 11latmcl 15535 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
154, 6, 10, 14syl3anc 1228 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( Y  ./\ 
Z )  e.  B
)
161, 7latjcl 15534 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( X  .\/  ( Y  ./\  Z ) )  e.  B )
174, 5, 15, 16syl3anc 1228 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  e.  B
)
18 simp1 996 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  HL )
19 eqid 2467 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
20 hlmod.f . . . . . . . . 9  |-  F  =  ( pmap `  K
)
211, 19, 20pmapssat 34555 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
2218, 5, 21syl2anc 661 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( Atoms `  K ) )
231, 19, 20pmapssat 34555 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
2418, 6, 23syl2anc 661 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Y )  C_  ( Atoms `  K ) )
25 eqid 2467 . . . . . . . . 9  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
261, 25, 20pmapsub 34564 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Z  e.  B )  ->  ( F `  Z
)  e.  ( PSubSp `  K ) )
274, 10, 26syl2anc 661 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Z )  e.  (
PSubSp `  K ) )
28 simp3l 1024 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  .<_  Z )
291, 2, 20pmaple 34557 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3018, 5, 10, 29syl3anc 1228 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3128, 30mpbid 210 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( F `  Z )
)
32 hlmod.p . . . . . . . . 9  |-  .+  =  ( +P `  K
)
3319, 25, 32pmod1i 34644 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) ) )  ->  ( ( F `  X )  C_  ( F `  Z
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) ) )
34333impia 1193 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) )  /\  ( F `  X )  C_  ( F `  Z )
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
3518, 22, 24, 27, 31, 34syl131anc 1241 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
361, 11, 19, 20pmapmeet 34569 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z ) )  =  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z ) ) )
3718, 9, 10, 36syl3anc 1228 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  ( X 
.\/  Y ) )  i^i  ( F `  Z ) ) )
38 simp3r 1025 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( X  .\/  Y
) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) )
3938ineq1d 3699 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z
) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) ) )
4037, 39eqtrd 2508 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
411, 11, 19, 20pmapmeet 34569 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( F `  ( Y  ./\  Z ) )  =  ( ( F `
 Y )  i^i  ( F `  Z
) ) )
4218, 6, 10, 41syl3anc 1228 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( Y  ./\  Z
) )  =  ( ( F `  Y
)  i^i  ( F `  Z ) ) )
4342oveq2d 6298 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  =  ( ( F `  X ) 
.+  ( ( F `
 Y )  i^i  ( F `  Z
) ) ) )
4435, 40, 433eqtr4d 2518 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  X ) 
.+  ( F `  ( Y  ./\  Z ) ) ) )
451, 7, 20, 32pmapjoin 34648 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( ( F `  X )  .+  ( F `  ( Y  ./\ 
Z ) ) ) 
C_  ( F `  ( X  .\/  ( Y 
./\  Z ) ) ) )
464, 5, 15, 45syl3anc 1228 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
4744, 46eqsstrd 3538 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
481, 2, 20pmaple 34557 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  ( X  .\/  ( Y  ./\  Z ) )  e.  B
)  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
4918, 13, 17, 48syl3anc 1228 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
5047, 49mpbird 232 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z
) ) )
511, 2, 7, 11mod1ile 15588 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
52513impia 1193 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
534, 5, 6, 10, 28, 52syl131anc 1241 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
541, 2, 4, 13, 17, 50, 53latasymd 15540 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  =  ( X 
.\/  ( Y  ./\  Z ) ) )
55543expia 1198 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14486   lecple 14558   joincjn 15427   meetcmee 15428   Latclat 15528   Atomscatm 34060   HLchlt 34147   PSubSpcpsubsp 34292   pmapcpmap 34293   +Pcpadd 34591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-psubsp 34299  df-pmap 34300  df-padd 34592
This theorem is referenced by:  atmod1i1  34653  atmod1i2  34655  llnmod1i2  34656
  Copyright terms: Public domain W3C validator