Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlmod1i Structured version   Unicode version

Theorem hlmod1i 33222
Description: A version of the modular law pmod1i 33214 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.)
Hypotheses
Ref Expression
hlmod.b  |-  B  =  ( Base `  K
)
hlmod.l  |-  .<_  =  ( le `  K )
hlmod.j  |-  .\/  =  ( join `  K )
hlmod.m  |-  ./\  =  ( meet `  K )
hlmod.f  |-  F  =  ( pmap `  K
)
hlmod.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
hlmod1i  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )

Proof of Theorem hlmod1i
StepHypRef Expression
1 hlmod.b . . 3  |-  B  =  ( Base `  K
)
2 hlmod.l . . 3  |-  .<_  =  ( le `  K )
3 hllat 32730 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 1004 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  Lat )
5 simp21 1016 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  e.  B )
6 simp22 1017 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Y  e.  B )
7 hlmod.j . . . . . 6  |-  .\/  =  ( join `  K )
81, 7latjcl 15217 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
94, 5, 6, 8syl3anc 1213 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  Y )  e.  B
)
10 simp23 1018 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  Z  e.  B )
11 hlmod.m . . . . 5  |-  ./\  =  ( meet `  K )
121, 11latmcl 15218 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
134, 9, 10, 12syl3anc 1213 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  e.  B )
141, 11latmcl 15218 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
154, 6, 10, 14syl3anc 1213 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( Y  ./\ 
Z )  e.  B
)
161, 7latjcl 15217 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( X  .\/  ( Y  ./\  Z ) )  e.  B )
174, 5, 15, 16syl3anc 1213 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  e.  B
)
18 simp1 983 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  K  e.  HL )
19 eqid 2441 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
20 hlmod.f . . . . . . . . 9  |-  F  =  ( pmap `  K
)
211, 19, 20pmapssat 33125 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
2218, 5, 21syl2anc 656 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( Atoms `  K ) )
231, 19, 20pmapssat 33125 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
2418, 6, 23syl2anc 656 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Y )  C_  ( Atoms `  K ) )
25 eqid 2441 . . . . . . . . 9  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
261, 25, 20pmapsub 33134 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  Z  e.  B )  ->  ( F `  Z
)  e.  ( PSubSp `  K ) )
274, 10, 26syl2anc 656 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  Z )  e.  (
PSubSp `  K ) )
28 simp3l 1011 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  X  .<_  Z )
291, 2, 20pmaple 33127 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3018, 5, 10, 29syl3anc 1213 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .<_  Z  <->  ( F `  X )  C_  ( F `  Z )
) )
3128, 30mpbid 210 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  X )  C_  ( F `  Z )
)
32 hlmod.p . . . . . . . . 9  |-  .+  =  ( +P `  K
)
3319, 25, 32pmod1i 33214 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) ) )  ->  ( ( F `  X )  C_  ( F `  Z
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) ) )
34333impia 1179 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( F `  X )  C_  ( Atoms `  K )  /\  ( F `  Y ) 
C_  ( Atoms `  K
)  /\  ( F `  Z )  e.  (
PSubSp `  K ) )  /\  ( F `  X )  C_  ( F `  Z )
)  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
3518, 22, 24, 27, 31, 34syl131anc 1226 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  =  ( ( F `  X
)  .+  ( ( F `  Y )  i^i  ( F `  Z
) ) ) )
361, 11, 19, 20pmapmeet 33139 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z ) )  =  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z ) ) )
3718, 9, 10, 36syl3anc 1213 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  ( X 
.\/  Y ) )  i^i  ( F `  Z ) ) )
38 simp3r 1012 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( X  .\/  Y
) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) )
3938ineq1d 3548 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  ( X  .\/  Y ) )  i^i  ( F `  Z
) )  =  ( ( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) ) )
4037, 39eqtrd 2473 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) ) )
411, 11, 19, 20pmapmeet 33139 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( F `  ( Y  ./\  Z ) )  =  ( ( F `
 Y )  i^i  ( F `  Z
) ) )
4218, 6, 10, 41syl3anc 1213 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( Y  ./\  Z
) )  =  ( ( F `  Y
)  i^i  ( F `  Z ) ) )
4342oveq2d 6106 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  =  ( ( F `  X ) 
.+  ( ( F `
 Y )  i^i  ( F `  Z
) ) ) )
4435, 40, 433eqtr4d 2483 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  =  ( ( F `  X ) 
.+  ( F `  ( Y  ./\  Z ) ) ) )
451, 7, 20, 32pmapjoin 33218 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  ./\  Z )  e.  B )  -> 
( ( F `  X )  .+  ( F `  ( Y  ./\ 
Z ) ) ) 
C_  ( F `  ( X  .\/  ( Y 
./\  Z ) ) ) )
464, 5, 15, 45syl3anc 1213 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( F `  X )  .+  ( F `  ( Y  ./\  Z ) ) )  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
4744, 46eqsstrd 3387 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( F `  ( ( X  .\/  Y )  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) )
481, 2, 20pmaple 33127 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  ( X  .\/  ( Y  ./\  Z ) )  e.  B
)  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
4918, 13, 17, 48syl3anc 1213 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( (
( X  .\/  Y
)  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z ) )  <-> 
( F `  (
( X  .\/  Y
)  ./\  Z )
)  C_  ( F `  ( X  .\/  ( Y  ./\  Z ) ) ) ) )
5047, 49mpbird 232 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  .<_  ( X  .\/  ( Y  ./\  Z
) ) )
511, 2, 7, 11mod1ile 15271 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Z  ->  ( X  .\/  ( Y  ./\  Z ) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) ) )
52513impia 1179 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  X  .<_  Z )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
534, 5, 6, 10, 28, 52syl131anc 1226 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( X  .\/  ( Y  ./\  Z
) )  .<_  ( ( X  .\/  Y ) 
./\  Z ) )
541, 2, 4, 13, 17, 50, 53latasymd 15223 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X  .<_  Z  /\  ( F `
 ( X  .\/  Y ) )  =  ( ( F `  X
)  .+  ( F `  Y ) ) ) )  ->  ( ( X  .\/  Y )  ./\  Z )  =  ( X 
.\/  ( Y  ./\  Z ) ) )
55543expia 1184 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Z  /\  ( F `  ( X 
.\/  Y ) )  =  ( ( F `
 X )  .+  ( F `  Y ) ) )  ->  (
( X  .\/  Y
)  ./\  Z )  =  ( X  .\/  ( Y  ./\  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    i^i cin 3324    C_ wss 3325   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Basecbs 14170   lecple 14241   joincjn 15110   meetcmee 15111   Latclat 15211   Atomscatm 32630   HLchlt 32717   PSubSpcpsubsp 32862   pmapcpmap 32863   +Pcpadd 33161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-lat 15212  df-clat 15274  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-psubsp 32869  df-pmap 32870  df-padd 33162
This theorem is referenced by:  atmod1i1  33223  atmod1i2  33225  llnmod1i2  33226
  Copyright terms: Public domain W3C validator