HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimi Unicode version

Theorem hlimi 21597
Description: Express the predicate: The limit of vector sequence  F in a Hilbert space is  A, i.e.  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer  y such that the norm of any later vector in the sequence minus the limit is less than  x. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1  |-  A  e. 
_V
Assertion
Ref Expression
hlimi  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
Distinct variable groups:    x, y,
z, F    x, A, y, z

Proof of Theorem hlimi
StepHypRef Expression
1 df-hlim 21382 . . . 4  |-  ~~>v  =  { <. f ,  w >.  |  ( ( f : NN --> ~H  /\  w  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  z )  -h  w ) )  < 
x ) }
21relopabi 4718 . . 3  |-  Rel  ~~>v
32brrelexi 4636 . 2  |-  ( F 
~~>v  A  ->  F  e.  _V )
4 nnex 9632 . . . 4  |-  NN  e.  _V
5 fex 5601 . . . 4  |-  ( ( F : NN --> ~H  /\  NN  e.  _V )  ->  F  e.  _V )
64, 5mpan2 655 . . 3  |-  ( F : NN --> ~H  ->  F  e.  _V )
76ad2antrr 709 . 2  |-  ( ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
)  ->  F  e.  _V )
8 hlim.1 . . 3  |-  A  e. 
_V
9 feq1 5232 . . . . . 6  |-  ( f  =  F  ->  (
f : NN --> ~H  <->  F : NN
--> ~H ) )
10 eleq1 2313 . . . . . 6  |-  ( w  =  A  ->  (
w  e.  ~H  <->  A  e.  ~H ) )
119, 10bi2anan9 848 . . . . 5  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( f : NN --> ~H  /\  w  e.  ~H )  <->  ( F : NN --> ~H  /\  A  e. 
~H ) ) )
12 fveq1 5376 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
13 oveq12 5719 . . . . . . . . . 10  |-  ( ( ( f `  z
)  =  ( F `
 z )  /\  w  =  A )  ->  ( ( f `  z )  -h  w
)  =  ( ( F `  z )  -h  A ) )
1412, 13sylan 459 . . . . . . . . 9  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( f `  z )  -h  w
)  =  ( ( F `  z )  -h  A ) )
1514fveq2d 5381 . . . . . . . 8  |-  ( ( f  =  F  /\  w  =  A )  ->  ( normh `  ( (
f `  z )  -h  w ) )  =  ( normh `  ( ( F `  z )  -h  A ) ) )
1615breq1d 3930 . . . . . . 7  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( normh `  (
( f `  z
)  -h  w ) )  <  x  <->  ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
1716rexralbidv 2549 . . . . . 6  |-  ( ( f  =  F  /\  w  =  A )  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  z )  -h  w ) )  < 
x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
1817ralbidv 2527 . . . . 5  |-  ( ( f  =  F  /\  w  =  A )  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  z )  -h  w
) )  <  x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  z )  -h  A ) )  < 
x ) )
1911, 18anbi12d 694 . . . 4  |-  ( ( f  =  F  /\  w  =  A )  ->  ( ( ( f : NN --> ~H  /\  w  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  z )  -h  w
) )  <  x
)  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
2019, 1brabga 4172 . . 3  |-  ( ( F  e.  _V  /\  A  e.  _V )  ->  ( F  ~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
218, 20mpan2 655 . 2  |-  ( F  e.  _V  ->  ( F  ~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) ) )
223, 7, 21pm5.21nii 344 1  |-  ( F 
~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A
) )  <  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   _Vcvv 2727   class class class wbr 3920   -->wf 4588   ` cfv 4592  (class class class)co 5710    < clt 8747   NNcn 9626   ZZ>=cuz 10109   RR+crp 10233   ~Hchil 21329   normhcno 21333    -h cmv 21335    ~~>v chli 21337
This theorem is referenced by:  hlimseqi  21598  hlimveci  21599  hlimconvi  21600  hlim2  21601
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-i2m1 8685  ax-1ne0 8686  ax-rrecex 8689  ax-cnre 8690
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-recs 6274  df-rdg 6309  df-n 9627  df-hlim 21382
  Copyright terms: Public domain W3C validator