HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimadd Structured version   Unicode version

Theorem hlimadd 24600
Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlimadd.3  |-  ( ph  ->  F : NN --> ~H )
hlimadd.4  |-  ( ph  ->  G : NN --> ~H )
hlimadd.5  |-  ( ph  ->  F  ~~>v  A )
hlimadd.6  |-  ( ph  ->  G  ~~>v  B )
hlimadd.7  |-  H  =  ( n  e.  NN  |->  ( ( F `  n )  +h  ( G `  n )
) )
Assertion
Ref Expression
hlimadd  |-  ( ph  ->  H  ~~>v  ( A  +h  B ) )
Distinct variable groups:    n, F    n, G    ph, n
Allowed substitution hints:    A( n)    B( n)    H( n)

Proof of Theorem hlimadd
StepHypRef Expression
1 nnuz 10901 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10682 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 eqid 2443 . . . . 5  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
4 eqid 2443 . . . . . 6  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
53, 4hhims 24579 . . . . 5  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
63, 5hhxmet 24582 . . . 4  |-  ( normh  o. 
-h  )  e.  ( *Met `  ~H )
7 eqid 2443 . . . . 5  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
87mopntopon 20019 . . . 4  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  (TopOn `  ~H ) )
96, 8mp1i 12 . . 3  |-  ( ph  ->  ( MetOpen `  ( normh  o. 
-h  ) )  e.  (TopOn `  ~H )
)
10 hlimadd.3 . . 3  |-  ( ph  ->  F : NN --> ~H )
11 hlimadd.4 . . 3  |-  ( ph  ->  G : NN --> ~H )
12 hlimadd.5 . . . 4  |-  ( ph  ->  F  ~~>v  A )
133hhnv 24572 . . . . . . 7  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
14 df-hba 24376 . . . . . . 7  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
153, 13, 14, 5, 7h2hlm 24387 . . . . . 6  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
16 resss 5139 . . . . . 6  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
1715, 16eqsstri 3391 . . . . 5  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
1817ssbri 4339 . . . 4  |-  ( F 
~~>v  A  ->  F ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) A )
1912, 18syl 16 . . 3  |-  ( ph  ->  F ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) A )
20 hlimadd.6 . . . 4  |-  ( ph  ->  G  ~~>v  B )
2117ssbri 4339 . . . 4  |-  ( G 
~~>v  B  ->  G ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) ) B )
2220, 21syl 16 . . 3  |-  ( ph  ->  G ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) B )
233hhva 24573 . . . . 5  |-  +h  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >. )
245, 7, 23vacn 24094 . . . 4  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  +h  e.  ( ( ( MetOpen `  ( normh  o.  -h  )
)  tX  ( MetOpen `  ( normh  o.  -h  )
) )  Cn  ( MetOpen
`  ( normh  o.  -h  ) ) ) )
2513, 24mp1i 12 . . 3  |-  ( ph  ->  +h  e.  ( ( ( MetOpen `  ( normh  o. 
-h  ) )  tX  ( MetOpen `  ( normh  o. 
-h  ) ) )  Cn  ( MetOpen `  ( normh  o.  -h  ) ) ) )
26 hlimadd.7 . . 3  |-  H  =  ( n  e.  NN  |->  ( ( F `  n )  +h  ( G `  n )
) )
271, 2, 9, 9, 10, 11, 19, 22, 25, 26lmcn2 19227 . 2  |-  ( ph  ->  H ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) ( A  +h  B
) )
2810ffvelrnda 5848 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e. 
~H )
2911ffvelrnda 5848 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e. 
~H )
30 hvaddcl 24419 . . . . 5  |-  ( ( ( F `  n
)  e.  ~H  /\  ( G `  n )  e.  ~H )  -> 
( ( F `  n )  +h  ( G `  n )
)  e.  ~H )
3128, 29, 30syl2anc 661 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  +h  ( G `  n ) )  e. 
~H )
3231, 26fmptd 5872 . . 3  |-  ( ph  ->  H : NN --> ~H )
33 ax-hilex 24406 . . . 4  |-  ~H  e.  _V
34 nnex 10333 . . . 4  |-  NN  e.  _V
3533, 34elmap 7246 . . 3  |-  ( H  e.  ( ~H  ^m  NN )  <->  H : NN --> ~H )
3632, 35sylibr 212 . 2  |-  ( ph  ->  H  e.  ( ~H 
^m  NN ) )
3715breqi 4303 . . 3  |-  ( H 
~~>v  ( A  +h  B
)  <->  H ( ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )  |`  ( ~H  ^m  NN ) ) ( A  +h  B ) )
38 ovex 6121 . . . 4  |-  ( A  +h  B )  e. 
_V
3938brres 5122 . . 3  |-  ( H ( ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )  |`  ( ~H  ^m  NN ) ) ( A  +h  B )  <->  ( H
( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) ) ( A  +h  B )  /\  H  e.  ( ~H  ^m  NN ) ) )
4037, 39bitri 249 . 2  |-  ( H 
~~>v  ( A  +h  B
)  <->  ( H ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) ) ( A  +h  B )  /\  H  e.  ( ~H  ^m  NN ) ) )
4127, 36, 40sylanbrc 664 1  |-  ( ph  ->  H  ~~>v  ( A  +h  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3888   class class class wbr 4297    e. cmpt 4355    |` cres 4847    o. ccom 4849   -->wf 5419   ` cfv 5423  (class class class)co 6096    ^m cmap 7219   1c1 9288   NNcn 10327   *Metcxmt 17806   MetOpencmopn 17811  TopOnctopon 18504    Cn ccn 18833   ~~> tclm 18835    tX ctx 19138   NrmCVeccnv 23967   ~Hchil 24326    +h cva 24327    .h csm 24328   normhcno 24330    -h cmv 24332    ~~>v chli 24334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367  ax-hilex 24406  ax-hfvadd 24407  ax-hvcom 24408  ax-hvass 24409  ax-hv0cl 24410  ax-hvaddid 24411  ax-hfvmul 24412  ax-hvmulid 24413  ax-hvmulass 24414  ax-hvdistr1 24415  ax-hvdistr2 24416  ax-hvmul0 24417  ax-hfi 24486  ax-his1 24489  ax-his2 24490  ax-his3 24491  ax-his4 24492
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-fi 7666  df-sup 7696  df-oi 7729  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-xneg 11094  df-xadd 11095  df-xmul 11096  df-icc 11312  df-fz 11443  df-fzo 11554  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-hom 14267  df-cco 14268  df-rest 14366  df-topn 14367  df-0g 14385  df-gsum 14386  df-topgen 14387  df-pt 14388  df-prds 14391  df-xrs 14445  df-qtop 14450  df-imas 14451  df-xps 14453  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-submnd 15470  df-mulg 15553  df-cntz 15840  df-cmn 16284  df-psmet 17814  df-xmet 17815  df-met 17816  df-bl 17817  df-mopn 17818  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-cn 18836  df-cnp 18837  df-lm 18838  df-tx 19140  df-hmeo 19333  df-xms 19900  df-tms 19902  df-grpo 23683  df-gid 23684  df-ginv 23685  df-gdiv 23686  df-ablo 23774  df-vc 23929  df-nv 23975  df-va 23978  df-ba 23979  df-sm 23980  df-0v 23981  df-vs 23982  df-nmcv 23983  df-ims 23984  df-hnorm 24375  df-hba 24376  df-hvsub 24378  df-hlim 24379
This theorem is referenced by:  chscllem4  25048
  Copyright terms: Public domain W3C validator