Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhgt2 Unicode version

Theorem hlhgt2 29871
Description: A Hilbert lattice has a height of at least 2. (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
hlhgt4.b  |-  B  =  ( Base `  K
)
hlhgt4.s  |-  .<  =  ( lt `  K )
hlhgt4.z  |-  .0.  =  ( 0. `  K )
hlhgt4.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
hlhgt2  |-  ( K  e.  HL  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
)
Distinct variable groups:    x, B    x, K
Allowed substitution hints:    .< ( x)    .1. ( x)    .0. (
x)

Proof of Theorem hlhgt2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhgt4.b . . 3  |-  B  =  ( Base `  K
)
2 hlhgt4.s . . 3  |-  .<  =  ( lt `  K )
3 hlhgt4.z . . 3  |-  .0.  =  ( 0. `  K )
4 hlhgt4.u . . 3  |-  .1.  =  ( 1. `  K )
51, 2, 3, 4hlhgt4 29870 . 2  |-  ( K  e.  HL  ->  E. y  e.  B  E. x  e.  B  E. z  e.  B  ( (  .0.  .<  y  /\  y  .<  x )  /\  (
x  .<  z  /\  z  .<  .1.  ) ) )
6 hlpos 29848 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Poset )
76ad3antrrr 711 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  K  e.  Poset )
8 hlop 29845 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
98ad3antrrr 711 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  K  e.  OP )
101, 3op0cl 29667 . . . . . . . 8  |-  ( K  e.  OP  ->  .0.  e.  B )
119, 10syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  .0.  e.  B )
12 simpllr 736 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  y  e.  B )
13 simplr 732 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  x  e.  B )
141, 2plttr 14382 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (  .0.  e.  B  /\  y  e.  B  /\  x  e.  B ) )  -> 
( (  .0.  .<  y  /\  y  .<  x
)  ->  .0.  .<  x
) )
157, 11, 12, 13, 14syl13anc 1186 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
(  .0.  .<  y  /\  y  .<  x )  ->  .0.  .<  x ) )
16 simpr 448 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  z  e.  B )
171, 4op1cl 29668 . . . . . . . 8  |-  ( K  e.  OP  ->  .1.  e.  B )
189, 17syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  .1.  e.  B )
191, 2plttr 14382 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
x  e.  B  /\  z  e.  B  /\  .1.  e.  B ) )  ->  ( ( x 
.<  z  /\  z  .<  .1.  )  ->  x  .<  .1.  ) )
207, 13, 16, 18, 19syl13anc 1186 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
( x  .<  z  /\  z  .<  .1.  )  ->  x  .<  .1.  )
)
2115, 20anim12d 547 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B )  /\  z  e.  B )  ->  (
( (  .0.  .<  y  /\  y  .<  x
)  /\  ( x  .<  z  /\  z  .<  .1.  ) )  ->  (  .0.  .<  x  /\  x  .<  .1.  ) ) )
2221rexlimdva 2790 . . . 4  |-  ( ( ( K  e.  HL  /\  y  e.  B )  /\  x  e.  B
)  ->  ( E. z  e.  B  (
(  .0.  .<  y  /\  y  .<  x )  /\  ( x  .<  z  /\  z  .<  .1.  )
)  ->  (  .0.  .<  x  /\  x  .<  .1.  )
) )
2322reximdva 2778 . . 3  |-  ( ( K  e.  HL  /\  y  e.  B )  ->  ( E. x  e.  B  E. z  e.  B  ( (  .0. 
.<  y  /\  y  .<  x )  /\  (
x  .<  z  /\  z  .<  .1.  ) )  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  ) )
)
2423rexlimdva 2790 . 2  |-  ( K  e.  HL  ->  ( E. y  e.  B  E. x  e.  B  E. z  e.  B  ( (  .0.  .<  y  /\  y  .<  x
)  /\  ( x  .<  z  /\  z  .<  .1.  ) )  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
) )
255, 24mpd 15 1  |-  ( K  e.  HL  ->  E. x  e.  B  (  .0.  .<  x  /\  x  .<  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   class class class wbr 4172   ` cfv 5413   Basecbs 13424   Posetcpo 14352   ltcplt 14353   0.cp0 14421   1.cp1 14422   OPcops 29655   HLchlt 29833
This theorem is referenced by:  hl0lt1N  29872  hl2at  29887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-poset 14358  df-plt 14370  df-lat 14430  df-oposet 29659  df-ol 29661  df-oml 29662  df-atl 29781  df-cvlat 29805  df-hlat 29834
  Copyright terms: Public domain W3C validator