Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatjass Structured version   Unicode version

Theorem hlatjass 32644
Description: Lattice join is associative. Frequently-used special case of latjass 16285 for atoms. (Contributed by NM, 27-Jul-2012.)
Hypotheses
Ref Expression
hlatjcom.j  |-  .\/  =  ( join `  K )
hlatjcom.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlatjass  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( P  .\/  ( Q  .\/  R ) ) )

Proof of Theorem hlatjass
StepHypRef Expression
1 hllat 32638 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
21adantr 466 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  K  e.  Lat )
3 simpr1 1011 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  A )
4 eqid 2420 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
5 hlatjcom.a . . . 4  |-  A  =  ( Atoms `  K )
64, 5atbase 32564 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
73, 6syl 17 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  P  e.  ( Base `  K
) )
8 simpr2 1012 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  A )
94, 5atbase 32564 . . 3  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
108, 9syl 17 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  Q  e.  ( Base `  K
) )
11 simpr3 1013 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  A )
124, 5atbase 32564 . . 3  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1311, 12syl 17 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  R  e.  ( Base `  K
) )
14 hlatjcom.j . . 3  |-  .\/  =  ( join `  K )
154, 14latjass 16285 . 2  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) ) )  -> 
( ( P  .\/  Q )  .\/  R )  =  ( P  .\/  ( Q  .\/  R ) ) )
162, 7, 10, 13, 15syl13anc 1266 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( P  .\/  Q
)  .\/  R )  =  ( P  .\/  ( Q  .\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   ` cfv 5592  (class class class)co 6296   Basecbs 15073   joincjn 16133   Latclat 16235   Atomscatm 32538   HLchlt 32625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 16117  df-poset 16135  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-lat 16236  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626
This theorem is referenced by:  hlatj12  32645  4noncolr3  32727  3dim3  32743  3atlem1  32757  3atlem2  32758  4atlem4a  32873  dalemply  32928  dalemsly  32929  dalawlem6  33150  dalawlem11  33155  dalawlem12  33156  4atexlemc  33343  cdleme20c  33587  cdleme35b  33726  dia2dimlem2  34342
  Copyright terms: Public domain W3C validator