HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his5 Structured version   Unicode version

Theorem his5 25667
Description: Associative law for inner product. Lemma 3.1(S5) of [Beran] p. 95. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his5  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )

Proof of Theorem his5
StepHypRef Expression
1 hvmulcl 25594 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  ~H )  ->  ( A  .h  C
)  e.  ~H )
2 ax-his1 25663 . . . . 5  |-  ( ( B  e.  ~H  /\  ( A  .h  C
)  e.  ~H )  ->  ( B  .ih  ( A  .h  C )
)  =  ( * `
 ( ( A  .h  C )  .ih  B ) ) )
31, 2sylan2 474 . . . 4  |-  ( ( B  e.  ~H  /\  ( A  e.  CC  /\  C  e.  ~H )
)  ->  ( B  .ih  ( A  .h  C
) )  =  ( * `  ( ( A  .h  C ) 
.ih  B ) ) )
433impb 1187 . . 3  |-  ( ( B  e.  ~H  /\  A  e.  CC  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( * `  (
( A  .h  C
)  .ih  B )
) )
543com12 1195 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( * `  (
( A  .h  C
)  .ih  B )
) )
6 ax-his3 25665 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  ~H  /\  B  e.  ~H )  ->  (
( A  .h  C
)  .ih  B )  =  ( A  x.  ( C  .ih  B ) ) )
763com23 1197 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  .h  C
)  .ih  B )  =  ( A  x.  ( C  .ih  B ) ) )
87fveq2d 5863 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( ( A  .h  C )  .ih  B ) )  =  ( * `  ( A  x.  ( C  .ih  B ) ) ) )
9 hicl 25661 . . . . . 6  |-  ( ( C  e.  ~H  /\  B  e.  ~H )  ->  ( C  .ih  B
)  e.  CC )
10 cjmul 12927 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  .ih  B )  e.  CC )  -> 
( * `  ( A  x.  ( C  .ih  B ) ) )  =  ( ( * `
 A )  x.  ( * `  ( C  .ih  B ) ) ) )
119, 10sylan2 474 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  ~H  /\  B  e.  ~H )
)  ->  ( * `  ( A  x.  ( C  .ih  B ) ) )  =  ( ( * `  A )  x.  ( * `  ( C  .ih  B ) ) ) )
12113impb 1187 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  ~H  /\  B  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  (
* `  ( C  .ih  B ) ) ) )
13123com23 1197 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  (
* `  ( C  .ih  B ) ) ) )
14 ax-his1 25663 . . . . 5  |-  ( ( B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  C
)  =  ( * `
 ( C  .ih  B ) ) )
15143adant1 1009 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  C )  =  ( * `  ( C  .ih  B ) ) )
1615oveq2d 6293 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( * `  A
)  x.  ( B 
.ih  C ) )  =  ( ( * `
 A )  x.  ( * `  ( C  .ih  B ) ) ) )
1713, 16eqtr4d 2506 . 2  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
* `  ( A  x.  ( C  .ih  B
) ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )
185, 8, 173eqtrd 2507 1  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( B  .ih  ( A  .h  C ) )  =  ( ( * `  A )  x.  ( B  .ih  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   ` cfv 5581  (class class class)co 6277   CCcc 9481    x. cmul 9488   *ccj 12881   ~Hchil 25500    .h csm 25502    .ih csp 25503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-hfvmul 25586  ax-hfi 25660  ax-his1 25663  ax-his3 25665
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-2 10585  df-cj 12884  df-re 12885  df-im 12886
This theorem is referenced by:  his52  25668  his35  25669  normlem0  25690  normlem9  25699  bcseqi  25701  polid2i  25738  pjhthlem1  25973  eigrei  26417  eigposi  26419  eigorthi  26420  brafnmul  26534  lnopunilem1  26593  hmopm  26604  cnlnadjlem6  26655  adjlnop  26669
  Copyright terms: Public domain W3C validator