![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hilhl | Structured version Visualization version Unicode version |
Description: The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hilhl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | hhhl 26938 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-8 1906 ax-9 1913 ax-10 1932 ax-11 1937 ax-12 1950 ax-13 2104 ax-ext 2451 ax-rep 4508 ax-sep 4518 ax-nul 4527 ax-pow 4579 ax-pr 4639 ax-un 6602 ax-inf2 8164 ax-cc 8883 ax-cnex 9613 ax-resscn 9614 ax-1cn 9615 ax-icn 9616 ax-addcl 9617 ax-addrcl 9618 ax-mulcl 9619 ax-mulrcl 9620 ax-mulcom 9621 ax-addass 9622 ax-mulass 9623 ax-distr 9624 ax-i2m1 9625 ax-1ne0 9626 ax-1rid 9627 ax-rnegex 9628 ax-rrecex 9629 ax-cnre 9630 ax-pre-lttri 9631 ax-pre-lttrn 9632 ax-pre-ltadd 9633 ax-pre-mulgt0 9634 ax-pre-sup 9635 ax-addf 9636 ax-mulf 9637 ax-hilex 26733 ax-hfvadd 26734 ax-hvcom 26735 ax-hvass 26736 ax-hv0cl 26737 ax-hvaddid 26738 ax-hfvmul 26739 ax-hvmulid 26740 ax-hvmulass 26741 ax-hvdistr1 26742 ax-hvdistr2 26743 ax-hvmul0 26744 ax-hfi 26813 ax-his1 26816 ax-his2 26817 ax-his3 26818 ax-his4 26819 ax-hcompl 26936 |
This theorem depends on definitions: df-bi 190 df-or 377 df-an 378 df-3or 1008 df-3an 1009 df-tru 1455 df-ex 1672 df-nf 1676 df-sb 1806 df-eu 2323 df-mo 2324 df-clab 2458 df-cleq 2464 df-clel 2467 df-nfc 2601 df-ne 2643 df-nel 2644 df-ral 2761 df-rex 2762 df-reu 2763 df-rmo 2764 df-rab 2765 df-v 3033 df-sbc 3256 df-csb 3350 df-dif 3393 df-un 3395 df-in 3397 df-ss 3404 df-pss 3406 df-nul 3723 df-if 3873 df-pw 3944 df-sn 3960 df-pr 3962 df-tp 3964 df-op 3966 df-uni 4191 df-int 4227 df-iun 4271 df-iin 4272 df-br 4396 df-opab 4455 df-mpt 4456 df-tr 4491 df-eprel 4750 df-id 4754 df-po 4760 df-so 4761 df-fr 4798 df-se 4799 df-we 4800 df-xp 4845 df-rel 4846 df-cnv 4847 df-co 4848 df-dm 4849 df-rn 4850 df-res 4851 df-ima 4852 df-pred 5387 df-ord 5433 df-on 5434 df-lim 5435 df-suc 5436 df-iota 5553 df-fun 5591 df-fn 5592 df-f 5593 df-f1 5594 df-fo 5595 df-f1o 5596 df-fv 5597 df-isom 5598 df-riota 6270 df-ov 6311 df-oprab 6312 df-mpt2 6313 df-om 6712 df-1st 6812 df-2nd 6813 df-wrecs 7046 df-recs 7108 df-rdg 7146 df-1o 7200 df-oadd 7204 df-omul 7205 df-er 7381 df-map 7492 df-pm 7493 df-en 7588 df-dom 7589 df-sdom 7590 df-fin 7591 df-fi 7943 df-sup 7974 df-inf 7975 df-oi 8043 df-card 8391 df-acn 8394 df-pnf 9695 df-mnf 9696 df-xr 9697 df-ltxr 9698 df-le 9699 df-sub 9882 df-neg 9883 df-div 10292 df-nn 10632 df-2 10690 df-3 10691 df-4 10692 df-n0 10894 df-z 10962 df-uz 11183 df-q 11288 df-rp 11326 df-xneg 11432 df-xadd 11433 df-xmul 11434 df-ico 11666 df-fz 11811 df-fl 12061 df-seq 12252 df-exp 12311 df-cj 13239 df-re 13240 df-im 13241 df-sqrt 13375 df-abs 13376 df-clim 13629 df-rlim 13630 df-rest 15399 df-topgen 15420 df-psmet 19039 df-xmet 19040 df-met 19041 df-bl 19042 df-mopn 19043 df-fbas 19044 df-fg 19045 df-top 19998 df-bases 19999 df-topon 20000 df-ntr 20112 df-nei 20191 df-lm 20322 df-fil 20939 df-fm 21031 df-flim 21032 df-flf 21033 df-cfil 22303 df-cau 22304 df-cmet 22305 df-grpo 26000 df-gid 26001 df-ginv 26002 df-gdiv 26003 df-ablo 26091 df-vc 26246 df-nv 26292 df-va 26295 df-ba 26296 df-sm 26297 df-0v 26298 df-vs 26299 df-nmcv 26300 df-ims 26301 df-ph 26535 df-cbn 26586 df-hlo 26619 df-hnorm 26702 df-hvsub 26705 df-hlim 26706 df-hcau 26707 |
This theorem is referenced by: hmopbdoptHIL 27722 |
Copyright terms: Public domain | W3C validator |