HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hiassdi Unicode version

Theorem hiassdi 22546
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hiassdi  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( (
( A  .h  B
)  +h  C ) 
.ih  D )  =  ( ( A  x.  ( B  .ih  D ) )  +  ( C 
.ih  D ) ) )

Proof of Theorem hiassdi
StepHypRef Expression
1 hvmulcl 22469 . . 3  |-  ( ( A  e.  CC  /\  B  e.  ~H )  ->  ( A  .h  B
)  e.  ~H )
2 ax-his2 22538 . . . 4  |-  ( ( ( A  .h  B
)  e.  ~H  /\  C  e.  ~H  /\  D  e.  ~H )  ->  (
( ( A  .h  B )  +h  C
)  .ih  D )  =  ( ( ( A  .h  B ) 
.ih  D )  +  ( C  .ih  D
) ) )
323expb 1154 . . 3  |-  ( ( ( A  .h  B
)  e.  ~H  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( (
( A  .h  B
)  +h  C ) 
.ih  D )  =  ( ( ( A  .h  B )  .ih  D )  +  ( C 
.ih  D ) ) )
41, 3sylan 458 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( (
( A  .h  B
)  +h  C ) 
.ih  D )  =  ( ( ( A  .h  B )  .ih  D )  +  ( C 
.ih  D ) ) )
5 ax-his3 22539 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  ~H  /\  D  e.  ~H )  ->  (
( A  .h  B
)  .ih  D )  =  ( A  x.  ( B  .ih  D ) ) )
653expa 1153 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  D  e.  ~H )  ->  ( ( A  .h  B )  .ih  D )  =  ( A  x.  ( B  .ih  D ) ) )
76adantrl 697 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  .h  B )  .ih  D )  =  ( A  x.  ( B 
.ih  D ) ) )
87oveq1d 6055 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( (
( A  .h  B
)  .ih  D )  +  ( C  .ih  D ) )  =  ( ( A  x.  ( B  .ih  D ) )  +  ( C  .ih  D ) ) )
94, 8eqtrd 2436 1  |-  ( ( ( A  e.  CC  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( (
( A  .h  B
)  +h  C ) 
.ih  D )  =  ( ( A  x.  ( B  .ih  D ) )  +  ( C 
.ih  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721  (class class class)co 6040   CCcc 8944    + caddc 8949    x. cmul 8951   ~Hchil 22375    +h cva 22376    .h csm 22377    .ih csp 22378
This theorem is referenced by:  unoplin  23376  hmoplin  23398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-hfvmul 22461  ax-his2 22538  ax-his3 22539
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043
  Copyright terms: Public domain W3C validator