HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Unicode version

Theorem hhssnv 26900
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
hhssnv.2  |-  H  e.  SH
Assertion
Ref Expression
hhssnv  |-  W  e.  NrmCVec

Proof of Theorem hhssnv
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5  |-  H  e.  SH
21hhssabloi 26898 . . . 4  |-  (  +h  |`  ( H  X.  H
) )  e.  AbelOp
3 ablogrpo 25997 . . . 4  |-  ( (  +h  |`  ( H  X.  H ) )  e. 
AbelOp  ->  (  +h  |`  ( H  X.  H ) )  e.  GrpOp )
42, 3ax-mp 5 . . 3  |-  (  +h  |`  ( H  X.  H
) )  e.  GrpOp
51shssii 26851 . . . . . 6  |-  H  C_  ~H
6 xpss12 4955 . . . . . 6  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
75, 5, 6mp2an 676 . . . . 5  |-  ( H  X.  H )  C_  ( ~H  X.  ~H )
8 ax-hfvadd 26638 . . . . . 6  |-  +h  :
( ~H  X.  ~H )
--> ~H
98fdmi 5747 . . . . 5  |-  dom  +h  =  ( ~H  X.  ~H )
107, 9sseqtr4i 3497 . . . 4  |-  ( H  X.  H )  C_  dom  +h
11 ssdmres 5141 . . . 4  |-  ( ( H  X.  H ) 
C_  dom  +h  <->  dom  (  +h  |`  ( H  X.  H
) )  =  ( H  X.  H ) )
1210, 11mpbi 211 . . 3  |-  dom  (  +h  |`  ( H  X.  H ) )  =  ( H  X.  H
)
134, 12grporn 25925 . 2  |-  H  =  ran  (  +h  |`  ( H  X.  H ) )
14 sh0 26854 . . . . . 6  |-  ( H  e.  SH  ->  0h  e.  H )
151, 14ax-mp 5 . . . . 5  |-  0h  e.  H
16 ovres 6446 . . . . 5  |-  ( ( 0h  e.  H  /\  0h  e.  H )  -> 
( 0h (  +h  |`  ( H  X.  H
) ) 0h )  =  ( 0h  +h  0h ) )
1715, 15, 16mp2an 676 . . . 4  |-  ( 0h (  +h  |`  ( H  X.  H ) ) 0h )  =  ( 0h  +h  0h )
18 ax-hv0cl 26641 . . . . 5  |-  0h  e.  ~H
1918hvaddid2i 26667 . . . 4  |-  ( 0h 
+h  0h )  =  0h
2017, 19eqtri 2451 . . 3  |-  ( 0h (  +h  |`  ( H  X.  H ) ) 0h )  =  0h
21 eqid 2422 . . . . 5  |-  (GId `  (  +h  |`  ( H  X.  H ) ) )  =  (GId `  (  +h  |`  ( H  X.  H ) ) )
2213, 21grpoid 25936 . . . 4  |-  ( ( (  +h  |`  ( H  X.  H ) )  e.  GrpOp  /\  0h  e.  H )  ->  ( 0h  =  (GId `  (  +h  |`  ( H  X.  H ) ) )  <-> 
( 0h (  +h  |`  ( H  X.  H
) ) 0h )  =  0h ) )
234, 15, 22mp2an 676 . . 3  |-  ( 0h  =  (GId `  (  +h  |`  ( H  X.  H ) ) )  <-> 
( 0h (  +h  |`  ( H  X.  H
) ) 0h )  =  0h )
2420, 23mpbir 212 . 2  |-  0h  =  (GId `  (  +h  |`  ( H  X.  H ) ) )
25 ax-hfvmul 26643 . . . . . 6  |-  .h  :
( CC  X.  ~H )
--> ~H
26 ffn 5742 . . . . . 6  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  .h  Fn  ( CC  X.  ~H )
)
2725, 26ax-mp 5 . . . . 5  |-  .h  Fn  ( CC  X.  ~H )
28 ssid 3483 . . . . . 6  |-  CC  C_  CC
29 xpss12 4955 . . . . . 6  |-  ( ( CC  C_  CC  /\  H  C_ 
~H )  ->  ( CC  X.  H )  C_  ( CC  X.  ~H )
)
3028, 5, 29mp2an 676 . . . . 5  |-  ( CC 
X.  H )  C_  ( CC  X.  ~H )
31 fnssres 5703 . . . . 5  |-  ( (  .h  Fn  ( CC 
X.  ~H )  /\  ( CC  X.  H )  C_  ( CC  X.  ~H )
)  ->  (  .h  |`  ( CC  X.  H
) )  Fn  ( CC  X.  H ) )
3227, 30, 31mp2an 676 . . . 4  |-  (  .h  |`  ( CC  X.  H
) )  Fn  ( CC  X.  H )
33 ovelrn 6455 . . . . . . 7  |-  ( (  .h  |`  ( CC  X.  H ) )  Fn  ( CC  X.  H
)  ->  ( z  e.  ran  (  .h  |`  ( CC  X.  H ) )  <->  E. x  e.  CC  E. y  e.  H  z  =  ( x (  .h  |`  ( CC  X.  H ) ) y ) ) )
3432, 33ax-mp 5 . . . . . 6  |-  ( z  e.  ran  (  .h  |`  ( CC  X.  H
) )  <->  E. x  e.  CC  E. y  e.  H  z  =  ( x (  .h  |`  ( CC  X.  H ) ) y ) )
35 ovres 6446 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  H )  ->  ( x (  .h  |`  ( CC  X.  H
) ) y )  =  ( x  .h  y ) )
36 shmulcl 26856 . . . . . . . . . 10  |-  ( ( H  e.  SH  /\  x  e.  CC  /\  y  e.  H )  ->  (
x  .h  y )  e.  H )
371, 36mp3an1 1347 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  H )  ->  ( x  .h  y
)  e.  H )
3835, 37eqeltrd 2510 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  H )  ->  ( x (  .h  |`  ( CC  X.  H
) ) y )  e.  H )
39 eleq1 2494 . . . . . . . 8  |-  ( z  =  ( x (  .h  |`  ( CC  X.  H ) ) y )  ->  ( z  e.  H  <->  ( x (  .h  |`  ( CC  X.  H ) ) y )  e.  H ) )
4038, 39syl5ibrcom 225 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  H )  ->  ( z  =  ( x (  .h  |`  ( CC  X.  H ) ) y )  ->  z  e.  H ) )
4140rexlimivv 2922 . . . . . 6  |-  ( E. x  e.  CC  E. y  e.  H  z  =  ( x (  .h  |`  ( CC  X.  H ) ) y )  ->  z  e.  H )
4234, 41sylbi 198 . . . . 5  |-  ( z  e.  ran  (  .h  |`  ( CC  X.  H
) )  ->  z  e.  H )
4342ssriv 3468 . . . 4  |-  ran  (  .h  |`  ( CC  X.  H ) )  C_  H
44 df-f 5601 . . . 4  |-  ( (  .h  |`  ( CC  X.  H ) ) : ( CC  X.  H
) --> H  <->  ( (  .h  |`  ( CC  X.  H ) )  Fn  ( CC  X.  H
)  /\  ran  (  .h  |`  ( CC  X.  H
) )  C_  H
) )
4532, 43, 44mpbir2an 928 . . 3  |-  (  .h  |`  ( CC  X.  H
) ) : ( CC  X.  H ) --> H
46 ax-1cn 9597 . . . . 5  |-  1  e.  CC
47 ovres 6446 . . . . 5  |-  ( ( 1  e.  CC  /\  x  e.  H )  ->  ( 1 (  .h  |`  ( CC  X.  H
) ) x )  =  ( 1  .h  x ) )
4846, 47mpan 674 . . . 4  |-  ( x  e.  H  ->  (
1 (  .h  |`  ( CC  X.  H ) ) x )  =  ( 1  .h  x ) )
491sheli 26852 . . . . 5  |-  ( x  e.  H  ->  x  e.  ~H )
50 ax-hvmulid 26644 . . . . 5  |-  ( x  e.  ~H  ->  (
1  .h  x )  =  x )
5149, 50syl 17 . . . 4  |-  ( x  e.  H  ->  (
1  .h  x )  =  x )
5248, 51eqtrd 2463 . . 3  |-  ( x  e.  H  ->  (
1 (  .h  |`  ( CC  X.  H ) ) x )  =  x )
53 id 23 . . . . 5  |-  ( y  e.  CC  ->  y  e.  CC )
541sheli 26852 . . . . 5  |-  ( z  e.  H  ->  z  e.  ~H )
55 ax-hvdistr1 26646 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  ~H  /\  z  e.  ~H )  ->  (
y  .h  ( x  +h  z ) )  =  ( ( y  .h  x )  +h  ( y  .h  z
) ) )
5653, 49, 54, 55syl3an 1306 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y  .h  (
x  +h  z ) )  =  ( ( y  .h  x )  +h  ( y  .h  z ) ) )
57 ovres 6446 . . . . . . 7  |-  ( ( x  e.  H  /\  z  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) z )  =  ( x  +h  z ) )
58573adant1 1023 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) z )  =  ( x  +h  z ) )
5958oveq2d 6317 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) ( x (  +h  |`  ( H  X.  H ) ) z ) )  =  ( y (  .h  |`  ( CC  X.  H
) ) ( x  +h  z ) ) )
60 shaddcl 26855 . . . . . . . 8  |-  ( ( H  e.  SH  /\  x  e.  H  /\  z  e.  H )  ->  ( x  +h  z
)  e.  H )
611, 60mp3an1 1347 . . . . . . 7  |-  ( ( x  e.  H  /\  z  e.  H )  ->  ( x  +h  z
)  e.  H )
62 ovres 6446 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( x  +h  z
)  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H ) ) ( x  +h  z ) )  =  ( y  .h  ( x  +h  z ) ) )
6361, 62sylan2 476 . . . . . 6  |-  ( ( y  e.  CC  /\  ( x  e.  H  /\  z  e.  H
) )  ->  (
y (  .h  |`  ( CC  X.  H ) ) ( x  +h  z
) )  =  ( y  .h  ( x  +h  z ) ) )
64633impb 1201 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) ( x  +h  z ) )  =  ( y  .h  ( x  +h  z
) ) )
6559, 64eqtrd 2463 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) ( x (  +h  |`  ( H  X.  H ) ) z ) )  =  ( y  .h  (
x  +h  z ) ) )
66 ovres 6446 . . . . . . 7  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) x )  =  ( y  .h  x ) )
67663adant3 1025 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) x )  =  ( y  .h  x ) )
68 ovres 6446 . . . . . . 7  |-  ( ( y  e.  CC  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) z )  =  ( y  .h  z ) )
69683adant2 1024 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) z )  =  ( y  .h  z ) )
7067, 69oveq12d 6319 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( ( y (  .h  |`  ( CC  X.  H ) ) x ) (  +h  |`  ( H  X.  H ) ) ( y (  .h  |`  ( CC  X.  H
) ) z ) )  =  ( ( y  .h  x ) (  +h  |`  ( H  X.  H ) ) ( y  .h  z
) ) )
71 shmulcl 26856 . . . . . . . 8  |-  ( ( H  e.  SH  /\  y  e.  CC  /\  x  e.  H )  ->  (
y  .h  x )  e.  H )
721, 71mp3an1 1347 . . . . . . 7  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( y  .h  x
)  e.  H )
73723adant3 1025 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y  .h  x
)  e.  H )
74 shmulcl 26856 . . . . . . . 8  |-  ( ( H  e.  SH  /\  y  e.  CC  /\  z  e.  H )  ->  (
y  .h  z )  e.  H )
751, 74mp3an1 1347 . . . . . . 7  |-  ( ( y  e.  CC  /\  z  e.  H )  ->  ( y  .h  z
)  e.  H )
76753adant2 1024 . . . . . 6  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y  .h  z
)  e.  H )
7773, 76ovresd 6447 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( ( y  .h  x ) (  +h  |`  ( H  X.  H
) ) ( y  .h  z ) )  =  ( ( y  .h  x )  +h  ( y  .h  z
) ) )
7870, 77eqtrd 2463 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( ( y (  .h  |`  ( CC  X.  H ) ) x ) (  +h  |`  ( H  X.  H ) ) ( y (  .h  |`  ( CC  X.  H
) ) z ) )  =  ( ( y  .h  x )  +h  ( y  .h  z ) ) )
7956, 65, 783eqtr4d 2473 . . 3  |-  ( ( y  e.  CC  /\  x  e.  H  /\  z  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H
) ) ( x (  +h  |`  ( H  X.  H ) ) z ) )  =  ( ( y (  .h  |`  ( CC  X.  H ) ) x ) (  +h  |`  ( H  X.  H ) ) ( y (  .h  |`  ( CC  X.  H
) ) z ) ) )
80 ax-hvdistr2 26647 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  ~H )  ->  (
( y  +  z )  .h  x )  =  ( ( y  .h  x )  +h  ( z  .h  x
) ) )
8149, 80syl3an3 1299 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  +  z )  .h  x )  =  ( ( y  .h  x )  +h  ( z  .h  x
) ) )
82 addcl 9621 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y  +  z )  e.  CC )
83 ovres 6446 . . . . 5  |-  ( ( ( y  +  z )  e.  CC  /\  x  e.  H )  ->  ( ( y  +  z ) (  .h  |`  ( CC  X.  H
) ) x )  =  ( ( y  +  z )  .h  x ) )
8482, 83stoic3 1656 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  +  z ) (  .h  |`  ( CC  X.  H ) ) x )  =  ( ( y  +  z )  .h  x ) )
85663adant2 1024 . . . . . 6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
y (  .h  |`  ( CC  X.  H ) ) x )  =  ( y  .h  x ) )
86 ovres 6446 . . . . . . 7  |-  ( ( z  e.  CC  /\  x  e.  H )  ->  ( z (  .h  |`  ( CC  X.  H
) ) x )  =  ( z  .h  x ) )
87863adant1 1023 . . . . . 6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
z (  .h  |`  ( CC  X.  H ) ) x )  =  ( z  .h  x ) )
8885, 87oveq12d 6319 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y (  .h  |`  ( CC  X.  H
) ) x ) (  +h  |`  ( H  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) )  =  ( ( y  .h  x ) (  +h  |`  ( H  X.  H ) ) ( z  .h  x
) ) )
89723adant2 1024 . . . . . 6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
y  .h  x )  e.  H )
90 shmulcl 26856 . . . . . . . 8  |-  ( ( H  e.  SH  /\  z  e.  CC  /\  x  e.  H )  ->  (
z  .h  x )  e.  H )
911, 90mp3an1 1347 . . . . . . 7  |-  ( ( z  e.  CC  /\  x  e.  H )  ->  ( z  .h  x
)  e.  H )
92913adant1 1023 . . . . . 6  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
z  .h  x )  e.  H )
9389, 92ovresd 6447 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  .h  x
) (  +h  |`  ( H  X.  H ) ) ( z  .h  x
) )  =  ( ( y  .h  x
)  +h  ( z  .h  x ) ) )
9488, 93eqtrd 2463 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y (  .h  |`  ( CC  X.  H
) ) x ) (  +h  |`  ( H  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) )  =  ( ( y  .h  x )  +h  ( z  .h  x ) ) )
9581, 84, 943eqtr4d 2473 . . 3  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  +  z ) (  .h  |`  ( CC  X.  H ) ) x )  =  ( ( y (  .h  |`  ( CC  X.  H
) ) x ) (  +h  |`  ( H  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) ) )
96 ax-hvmulass 26645 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  ~H )  ->  (
( y  x.  z
)  .h  x )  =  ( y  .h  ( z  .h  x
) ) )
9749, 96syl3an3 1299 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  x.  z
)  .h  x )  =  ( y  .h  ( z  .h  x
) ) )
98 mulcl 9623 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y  x.  z
)  e.  CC )
99 ovres 6446 . . . . 5  |-  ( ( ( y  x.  z
)  e.  CC  /\  x  e.  H )  ->  ( ( y  x.  z ) (  .h  |`  ( CC  X.  H
) ) x )  =  ( ( y  x.  z )  .h  x ) )
10098, 99stoic3 1656 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  x.  z
) (  .h  |`  ( CC  X.  H ) ) x )  =  ( ( y  x.  z
)  .h  x ) )
10187oveq2d 6317 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
y (  .h  |`  ( CC  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) )  =  ( y (  .h  |`  ( CC  X.  H ) ) ( z  .h  x
) ) )
102 ovres 6446 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( z  .h  x
)  e.  H )  ->  ( y (  .h  |`  ( CC  X.  H ) ) ( z  .h  x ) )  =  ( y  .h  ( z  .h  x ) ) )
10391, 102sylan2 476 . . . . . 6  |-  ( ( y  e.  CC  /\  ( z  e.  CC  /\  x  e.  H ) )  ->  ( y
(  .h  |`  ( CC  X.  H ) ) ( z  .h  x
) )  =  ( y  .h  ( z  .h  x ) ) )
1041033impb 1201 . . . . 5  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
y (  .h  |`  ( CC  X.  H ) ) ( z  .h  x
) )  =  ( y  .h  ( z  .h  x ) ) )
105101, 104eqtrd 2463 . . . 4  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
y (  .h  |`  ( CC  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) )  =  ( y  .h  ( z  .h  x ) ) )
10697, 100, 1053eqtr4d 2473 . . 3  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  H )  ->  (
( y  x.  z
) (  .h  |`  ( CC  X.  H ) ) x )  =  ( y (  .h  |`  ( CC  X.  H ) ) ( z (  .h  |`  ( CC  X.  H
) ) x ) ) )
107 eqid 2422 . . 3  |-  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.  =  <. (  +h  |`  ( H  X.  H
) ) ,  (  .h  |`  ( CC  X.  H ) ) >.
1082, 12, 45, 52, 79, 95, 106, 107isvci 26186 . 2  |-  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.  e.  CVecOLD
109 normf 26761 . . 3  |-  normh : ~H --> RR
110 fssres 5762 . . 3  |-  ( (
normh : ~H --> RR  /\  H  C_  ~H )  -> 
( normh  |`  H ) : H --> RR )
111109, 5, 110mp2an 676 . 2  |-  ( normh  |`  H ) : H --> RR
112 fvres 5891 . . . . 5  |-  ( x  e.  H  ->  (
( normh  |`  H ) `  x )  =  (
normh `  x ) )
113112eqeq1d 2424 . . . 4  |-  ( x  e.  H  ->  (
( ( normh  |`  H ) `
 x )  =  0  <->  ( normh `  x
)  =  0 ) )
114 norm-i 26767 . . . . 5  |-  ( x  e.  ~H  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
11549, 114syl 17 . . . 4  |-  ( x  e.  H  ->  (
( normh `  x )  =  0  <->  x  =  0h ) )
116113, 115bitrd 256 . . 3  |-  ( x  e.  H  ->  (
( ( normh  |`  H ) `
 x )  =  0  <->  x  =  0h ) )
117116biimpa 486 . 2  |-  ( ( x  e.  H  /\  ( ( normh  |`  H ) `
 x )  =  0 )  ->  x  =  0h )
118 norm-iii 26778 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  ~H )  ->  ( normh `  ( y  .h  x ) )  =  ( ( abs `  y
)  x.  ( normh `  x ) ) )
11949, 118sylan2 476 . . 3  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( normh `  ( y  .h  x ) )  =  ( ( abs `  y
)  x.  ( normh `  x ) ) )
12066fveq2d 5881 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( normh  |`  H ) `
 ( y (  .h  |`  ( CC  X.  H ) ) x ) )  =  ( ( normh  |`  H ) `
 ( y  .h  x ) ) )
121 fvres 5891 . . . . 5  |-  ( ( y  .h  x )  e.  H  ->  (
( normh  |`  H ) `  ( y  .h  x
) )  =  (
normh `  ( y  .h  x ) ) )
12272, 121syl 17 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( normh  |`  H ) `
 ( y  .h  x ) )  =  ( normh `  ( y  .h  x ) ) )
123120, 122eqtrd 2463 . . 3  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( normh  |`  H ) `
 ( y (  .h  |`  ( CC  X.  H ) ) x ) )  =  (
normh `  ( y  .h  x ) ) )
124112adantl 467 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( normh  |`  H ) `
 x )  =  ( normh `  x )
)
125124oveq2d 6317 . . 3  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( abs `  y
)  x.  ( (
normh  |`  H ) `  x ) )  =  ( ( abs `  y
)  x.  ( normh `  x ) ) )
126119, 123, 1253eqtr4d 2473 . 2  |-  ( ( y  e.  CC  /\  x  e.  H )  ->  ( ( normh  |`  H ) `
 ( y (  .h  |`  ( CC  X.  H ) ) x ) )  =  ( ( abs `  y
)  x.  ( (
normh  |`  H ) `  x ) ) )
1271sheli 26852 . . . 4  |-  ( y  e.  H  ->  y  e.  ~H )
128 norm-ii 26776 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  +h  y ) )  <_ 
( ( normh `  x
)  +  ( normh `  y ) ) )
12949, 127, 128syl2an 479 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( normh `  ( x  +h  y ) )  <_ 
( ( normh `  x
)  +  ( normh `  y ) ) )
130 ovres 6446 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) y )  =  ( x  +h  y ) )
131130fveq2d 5881 . . . 4  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( normh  |`  H ) `
 ( x (  +h  |`  ( H  X.  H ) ) y ) )  =  ( ( normh  |`  H ) `
 ( x  +h  y ) ) )
132 shaddcl 26855 . . . . . 6  |-  ( ( H  e.  SH  /\  x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
1331, 132mp3an1 1347 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
134 fvres 5891 . . . . 5  |-  ( ( x  +h  y )  e.  H  ->  (
( normh  |`  H ) `  ( x  +h  y
) )  =  (
normh `  ( x  +h  y ) ) )
135133, 134syl 17 . . . 4  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( normh  |`  H ) `
 ( x  +h  y ) )  =  ( normh `  ( x  +h  y ) ) )
136131, 135eqtrd 2463 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( normh  |`  H ) `
 ( x (  +h  |`  ( H  X.  H ) ) y ) )  =  (
normh `  ( x  +h  y ) ) )
137 fvres 5891 . . . 4  |-  ( y  e.  H  ->  (
( normh  |`  H ) `  y )  =  (
normh `  y ) )
138112, 137oveqan12d 6320 . . 3  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( ( normh  |`  H ) `  x
)  +  ( (
normh  |`  H ) `  y ) )  =  ( ( normh `  x
)  +  ( normh `  y ) ) )
139129, 136, 1383brtr4d 4451 . 2  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( normh  |`  H ) `
 ( x (  +h  |`  ( H  X.  H ) ) y ) )  <_  (
( ( normh  |`  H ) `
 x )  +  ( ( normh  |`  H ) `
 y ) ) )
140 hhssnvt.1 . 2  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
14113, 24, 108, 111, 117, 126, 139, 140isnvi 26217 1  |-  W  e.  NrmCVec
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   E.wrex 2776    C_ wss 3436   <.cop 4002   class class class wbr 4420    X. cxp 4847   dom cdm 4849   ran crn 4850    |` cres 4851    Fn wfn 5592   -->wf 5593   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    <_ cle 9676   abscabs 13285   GrpOpcgr 25899  GIdcgi 25900   AbelOpcablo 25994   NrmCVeccnv 26188   ~Hchil 26557    +h cva 26558    .h csm 26559   normhcno 26561   0hc0v 26562   SHcsh 26566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-hilex 26637  ax-hfvadd 26638  ax-hvcom 26639  ax-hvass 26640  ax-hv0cl 26641  ax-hvaddid 26642  ax-hfvmul 26643  ax-hvmulid 26644  ax-hvmulass 26645  ax-hvdistr1 26646  ax-hvdistr2 26647  ax-hvmul0 26648  ax-hfi 26717  ax-his1 26720  ax-his2 26721  ax-his3 26722  ax-his4 26723
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-sup 7958  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-seq 12213  df-exp 12272  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-grpo 25904  df-gid 25905  df-ginv 25906  df-ablo 25995  df-subgo 26015  df-vc 26150  df-nv 26196  df-va 26199  df-ba 26200  df-sm 26201  df-0v 26202  df-nmcv 26204  df-hnorm 26606  df-hba 26607  df-hvsub 26609  df-sh 26845
This theorem is referenced by:  hhssnvt  26901  hhssvsf  26909  hhssims  26911  hhssmet  26913  hhssmetdval  26914  hhssbn  26916
  Copyright terms: Public domain W3C validator