HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnm Structured version   Unicode version

Theorem hhssnm 24841
Description: The norm operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhss.1  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
Assertion
Ref Expression
hhssnm  |-  ( normh  |`  H )  =  (
normCV
`  W )

Proof of Theorem hhssnm
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( normCV `  W )  =  (
normCV
`  W )
21nmcvfval 24164 . 2  |-  ( normCV `  W )  =  ( 2nd `  W )
3 hhss.1 . . 3  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
43fveq2i 5805 . 2  |-  ( 2nd `  W )  =  ( 2nd `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
5 opex 4667 . . 3  |-  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.  e.  _V
6 normf 24704 . . . . 5  |-  normh : ~H --> RR
7 ax-hilex 24580 . . . . 5  |-  ~H  e.  _V
8 fex 6062 . . . . 5  |-  ( (
normh : ~H --> RR  /\  ~H  e.  _V )  ->  normh  e.  _V )
96, 7, 8mp2an 672 . . . 4  |-  normh  e.  _V
109resex 5261 . . 3  |-  ( normh  |`  H )  e.  _V
115, 10op2nd 6699 . 2  |-  ( 2nd `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )  =  ( normh  |`  H )
122, 4, 113eqtrri 2488 1  |-  ( normh  |`  H )  =  (
normCV
`  W )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   _Vcvv 3078   <.cop 3994    X. cxp 4949    |` cres 4953   -->wf 5525   ` cfv 5529   2ndc2nd 6689   CCcc 9395   RRcr 9396   normCVcnmcv 24147   ~Hchil 24500    +h cva 24501    .h csm 24502   normhcno 24504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-hilex 24580  ax-hv0cl 24584  ax-hvmul0 24591  ax-hfi 24660  ax-his1 24663  ax-his3 24665  ax-his4 24666
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7806  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-n0 10695  df-z 10762  df-uz 10977  df-rp 11107  df-seq 11928  df-exp 11987  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-nmcv 24157  df-hnorm 24549
This theorem is referenced by:  hhsst  24846  hhsssh2  24850  hhssims  24855  hhssmetdval  24858
  Copyright terms: Public domain W3C validator