HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Unicode version

Theorem hhsscms 24695
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
hhssims2.3  |-  D  =  ( IndMet `  W )
hhsscms.3  |-  H  e. 
CH
Assertion
Ref Expression
hhsscms  |-  D  e.  ( CMet `  H
)

Proof of Theorem hhsscms
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . 2  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
2 hhssims2.1 . . 3  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
3 hhssims2.3 . . 3  |-  D  =  ( IndMet `  W )
4 hhsscms.3 . . . 4  |-  H  e. 
CH
54chshii 24645 . . 3  |-  H  e.  SH
62, 3, 5hhssmet 24693 . 2  |-  D  e.  ( Met `  H
)
7 simpl 457 . . . . . . . . . 10  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  D ) )
82, 3, 5hhssims2 24692 . . . . . . . . . . 11  |-  D  =  ( ( normh  o.  -h  )  |`  ( H  X.  H ) )
98fveq2i 5709 . . . . . . . . . 10  |-  ( Cau `  D )  =  ( Cau `  ( (
normh  o.  -h  )  |`  ( H  X.  H
) ) )
107, 9syl6eleq 2533 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  ( ( normh  o.  -h  )  |`  ( H  X.  H ) ) ) )
11 eqid 2443 . . . . . . . . . . 11  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
1211hilxmet 24612 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  e.  ( *Met `  ~H )
13 simpr 461 . . . . . . . . . 10  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f : NN --> H )
14 causs 20824 . . . . . . . . . 10  |-  ( ( ( normh  o.  -h  )  e.  ( *Met `  ~H )  /\  f : NN --> H )  ->  ( f  e.  ( Cau `  ( normh  o.  -h  ) )  <-> 
f  e.  ( Cau `  ( ( normh  o.  -h  )  |`  ( H  X.  H ) ) ) ) )
1512, 13, 14sylancr 663 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( f  e.  ( Cau `  ( normh  o. 
-h  ) )  <->  f  e.  ( Cau `  ( (
normh  o.  -h  )  |`  ( H  X.  H
) ) ) ) )
1610, 15mpbird 232 . . . . . . . 8  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  ( normh  o.  -h  ) ) )
174chssii 24649 . . . . . . . . . 10  |-  H  C_  ~H
18 fss 5582 . . . . . . . . . 10  |-  ( ( f : NN --> H  /\  H  C_  ~H )  -> 
f : NN --> ~H )
1913, 17, 18sylancl 662 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f : NN --> ~H )
20 ax-hilex 24416 . . . . . . . . . 10  |-  ~H  e.  _V
21 nnex 10343 . . . . . . . . . 10  |-  NN  e.  _V
2220, 21elmap 7256 . . . . . . . . 9  |-  ( f  e.  ( ~H  ^m  NN )  <->  f : NN --> ~H )
2319, 22sylibr 212 . . . . . . . 8  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( ~H 
^m  NN ) )
24 eqid 2443 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
2524, 11hhims 24589 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
2624, 25hhcau 24615 . . . . . . . . 9  |-  Cauchy  =  ( ( Cau `  ( normh  o.  -h  ) )  i^i  ( ~H  ^m  NN ) )
2726elin2 3556 . . . . . . . 8  |-  ( f  e.  Cauchy 
<->  ( f  e.  ( Cau `  ( normh  o. 
-h  ) )  /\  f  e.  ( ~H  ^m  NN ) ) )
2816, 23, 27sylanbrc 664 . . . . . . 7  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  Cauchy )
29 ax-hcompl 24619 . . . . . . 7  |-  ( f  e.  Cauchy  ->  E. x  e.  ~H  f  ~~>v  x )
30 vex 2990 . . . . . . . . 9  |-  f  e. 
_V
31 vex 2990 . . . . . . . . 9  |-  x  e. 
_V
3230, 31breldm 5059 . . . . . . . 8  |-  ( f 
~~>v  x  ->  f  e.  dom 
~~>v  )
3332rexlimivw 2852 . . . . . . 7  |-  ( E. x  e.  ~H  f  ~~>v  x  ->  f  e.  dom 
~~>v  )
3428, 29, 333syl 20 . . . . . 6  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  dom  ~~>v  )
35 hlimf 24655 . . . . . . 7  |-  ~~>v  : dom  ~~>v  --> ~H
36 ffun 5576 . . . . . . 7  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
37 funfvbrb 5831 . . . . . . 7  |-  ( Fun  ~~>v 
->  ( f  e.  dom  ~~>v  <->  f  ~~>v  (  ~~>v  `  f )
) )
3835, 36, 37mp2b 10 . . . . . 6  |-  ( f  e.  dom  ~~>v  <->  f  ~~>v  ( 
~~>v  `  f ) )
3934, 38sylib 196 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  ~~>v  (  ~~>v  `  f
) )
40 eqid 2443 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
4124, 25, 40hhlm 24616 . . . . . . 7  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
42 resss 5149 . . . . . . 7  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
4341, 42eqsstri 3401 . . . . . 6  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
4443ssbri 4349 . . . . 5  |-  ( f 
~~>v  (  ~~>v  `  f )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )
)
4539, 44syl 16 . . . 4  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )
)
468, 40, 1metrest 20114 . . . . . . 7  |-  ( ( ( normh  o.  -h  )  e.  ( *Met `  ~H )  /\  H  C_  ~H )  -> 
( ( MetOpen `  ( normh  o.  -h  ) )t  H )  =  ( MetOpen `  D ) )
4712, 17, 46mp2an 672 . . . . . 6  |-  ( (
MetOpen `  ( normh  o.  -h  ) )t  H )  =  (
MetOpen `  D )
4847eqcomi 2447 . . . . 5  |-  ( MetOpen `  D )  =  ( ( MetOpen `  ( normh  o. 
-h  ) )t  H )
49 nnuz 10911 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
504a1i 11 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  ->  H  e.  CH )
5140mopntop 20030 . . . . . 6  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  Top )
5212, 51mp1i 12 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( MetOpen `  ( normh  o. 
-h  ) )  e. 
Top )
53 fvex 5716 . . . . . . 7  |-  (  ~~>v  `  f )  e.  _V
5453chlimi 24652 . . . . . 6  |-  ( ( H  e.  CH  /\  f : NN --> H  /\  f  ~~>v  (  ~~>v  `  f
) )  ->  (  ~~>v 
`  f )  e.  H )
5550, 13, 39, 54syl3anc 1218 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
(  ~~>v  `  f )  e.  H )
56 1zzd 10692 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
1  e.  ZZ )
5748, 49, 50, 52, 55, 56, 13lmss 18917 . . . 4  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )  <->  f ( ~~> t `  ( MetOpen
`  D ) ) (  ~~>v  `  f )
) )
5845, 57mpbid 210 . . 3  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f ( ~~> t `  ( MetOpen `  D )
) (  ~~>v  `  f
) )
5930, 53breldm 5059 . . 3  |-  ( f ( ~~> t `  ( MetOpen
`  D ) ) (  ~~>v  `  f )  ->  f  e.  dom  ( ~~> t `  ( MetOpen `  D
) ) )
6058, 59syl 16 . 2  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  dom  ( ~~> t `  ( MetOpen `  D
) ) )
611, 6, 60iscmet3i 20837 1  |-  D  e.  ( CMet `  H
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2731    C_ wss 3343   <.cop 3898   class class class wbr 4307    X. cxp 4853   dom cdm 4855    |` cres 4857    o. ccom 4859   Fun wfun 5427   -->wf 5429   ` cfv 5433  (class class class)co 6106    ^m cmap 7229   CCcc 9295   1c1 9298   NNcn 10337   ↾t crest 14374   *Metcxmt 17816   MetOpencmopn 17821   Topctop 18513   ~~> tclm 18845   Caucca 20779   CMetcms 20780   IndMetcims 23984   ~Hchil 24336    +h cva 24337    .h csm 24338   normhcno 24340    -h cmv 24342   Cauchyccau 24343    ~~>v chli 24344   CHcch 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cc 8619  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375  ax-addf 9376  ax-mulf 9377  ax-hilex 24416  ax-hfvadd 24417  ax-hvcom 24418  ax-hvass 24419  ax-hv0cl 24420  ax-hvaddid 24421  ax-hfvmul 24422  ax-hvmulid 24423  ax-hvmulass 24424  ax-hvdistr1 24425  ax-hvdistr2 24426  ax-hvmul0 24427  ax-hfi 24496  ax-his1 24499  ax-his2 24500  ax-his3 24501  ax-his4 24502  ax-hcompl 24619
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-omul 6940  df-er 7116  df-map 7231  df-pm 7232  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-fi 7676  df-sup 7706  df-oi 7739  df-card 8124  df-acn 8127  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-n0 10595  df-z 10662  df-uz 10877  df-q 10969  df-rp 11007  df-xneg 11104  df-xadd 11105  df-xmul 11106  df-ico 11321  df-icc 11322  df-fz 11453  df-fl 11657  df-seq 11822  df-exp 11881  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-clim 12981  df-rlim 12982  df-rest 14376  df-topgen 14397  df-psmet 17824  df-xmet 17825  df-met 17826  df-bl 17827  df-mopn 17828  df-fbas 17829  df-fg 17830  df-top 18518  df-bases 18520  df-topon 18521  df-ntr 18639  df-nei 18717  df-lm 18848  df-haus 18934  df-fil 19434  df-fm 19526  df-flim 19527  df-flf 19528  df-cfil 20781  df-cau 20782  df-cmet 20783  df-grpo 23693  df-gid 23694  df-ginv 23695  df-gdiv 23696  df-ablo 23784  df-subgo 23804  df-vc 23939  df-nv 23985  df-va 23988  df-ba 23989  df-sm 23990  df-0v 23991  df-vs 23992  df-nmcv 23993  df-ims 23994  df-ssp 24135  df-hnorm 24385  df-hba 24386  df-hvsub 24388  df-hlim 24389  df-hcau 24390  df-sh 24624  df-ch 24639  df-ch0 24671
This theorem is referenced by:  hhssbn  24696
  Copyright terms: Public domain W3C validator