HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsscms Structured version   Unicode version

Theorem hhsscms 25871
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssims2.1  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
hhssims2.3  |-  D  =  ( IndMet `  W )
hhsscms.3  |-  H  e. 
CH
Assertion
Ref Expression
hhsscms  |-  D  e.  ( CMet `  H
)

Proof of Theorem hhsscms
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
2 hhssims2.1 . . 3  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
3 hhssims2.3 . . 3  |-  D  =  ( IndMet `  W )
4 hhsscms.3 . . . 4  |-  H  e. 
CH
54chshii 25821 . . 3  |-  H  e.  SH
62, 3, 5hhssmet 25869 . 2  |-  D  e.  ( Met `  H
)
7 simpl 457 . . . . . . . . . 10  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  D ) )
82, 3, 5hhssims2 25868 . . . . . . . . . . 11  |-  D  =  ( ( normh  o.  -h  )  |`  ( H  X.  H ) )
98fveq2i 5867 . . . . . . . . . 10  |-  ( Cau `  D )  =  ( Cau `  ( (
normh  o.  -h  )  |`  ( H  X.  H
) ) )
107, 9syl6eleq 2565 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  ( ( normh  o.  -h  )  |`  ( H  X.  H ) ) ) )
11 eqid 2467 . . . . . . . . . . 11  |-  ( normh  o. 
-h  )  =  (
normh  o.  -h  )
1211hilxmet 25788 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  e.  ( *Met `  ~H )
13 simpr 461 . . . . . . . . . 10  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f : NN --> H )
14 causs 21472 . . . . . . . . . 10  |-  ( ( ( normh  o.  -h  )  e.  ( *Met `  ~H )  /\  f : NN --> H )  ->  ( f  e.  ( Cau `  ( normh  o.  -h  ) )  <-> 
f  e.  ( Cau `  ( ( normh  o.  -h  )  |`  ( H  X.  H ) ) ) ) )
1512, 13, 14sylancr 663 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( f  e.  ( Cau `  ( normh  o. 
-h  ) )  <->  f  e.  ( Cau `  ( (
normh  o.  -h  )  |`  ( H  X.  H
) ) ) ) )
1610, 15mpbird 232 . . . . . . . 8  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( Cau `  ( normh  o.  -h  ) ) )
174chssii 25825 . . . . . . . . . 10  |-  H  C_  ~H
18 fss 5737 . . . . . . . . . 10  |-  ( ( f : NN --> H  /\  H  C_  ~H )  -> 
f : NN --> ~H )
1913, 17, 18sylancl 662 . . . . . . . . 9  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f : NN --> ~H )
20 ax-hilex 25592 . . . . . . . . . 10  |-  ~H  e.  _V
21 nnex 10538 . . . . . . . . . 10  |-  NN  e.  _V
2220, 21elmap 7444 . . . . . . . . 9  |-  ( f  e.  ( ~H  ^m  NN )  <->  f : NN --> ~H )
2319, 22sylibr 212 . . . . . . . 8  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  ( ~H 
^m  NN ) )
24 eqid 2467 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
2524, 11hhims 25765 . . . . . . . . . 10  |-  ( normh  o. 
-h  )  =  (
IndMet `  <. <.  +h  ,  .h  >. ,  normh >. )
2624, 25hhcau 25791 . . . . . . . . 9  |-  Cauchy  =  ( ( Cau `  ( normh  o.  -h  ) )  i^i  ( ~H  ^m  NN ) )
2726elin2 3689 . . . . . . . 8  |-  ( f  e.  Cauchy 
<->  ( f  e.  ( Cau `  ( normh  o. 
-h  ) )  /\  f  e.  ( ~H  ^m  NN ) ) )
2816, 23, 27sylanbrc 664 . . . . . . 7  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  Cauchy )
29 ax-hcompl 25795 . . . . . . 7  |-  ( f  e.  Cauchy  ->  E. x  e.  ~H  f  ~~>v  x )
30 vex 3116 . . . . . . . . 9  |-  f  e. 
_V
31 vex 3116 . . . . . . . . 9  |-  x  e. 
_V
3230, 31breldm 5205 . . . . . . . 8  |-  ( f 
~~>v  x  ->  f  e.  dom 
~~>v  )
3332rexlimivw 2952 . . . . . . 7  |-  ( E. x  e.  ~H  f  ~~>v  x  ->  f  e.  dom 
~~>v  )
3428, 29, 333syl 20 . . . . . 6  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  dom  ~~>v  )
35 hlimf 25831 . . . . . . 7  |-  ~~>v  : dom  ~~>v  --> ~H
36 ffun 5731 . . . . . . 7  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
37 funfvbrb 5992 . . . . . . 7  |-  ( Fun  ~~>v 
->  ( f  e.  dom  ~~>v  <->  f  ~~>v  (  ~~>v  `  f )
) )
3835, 36, 37mp2b 10 . . . . . 6  |-  ( f  e.  dom  ~~>v  <->  f  ~~>v  ( 
~~>v  `  f ) )
3934, 38sylib 196 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  ~~>v  (  ~~>v  `  f
) )
40 eqid 2467 . . . . . . . 8  |-  ( MetOpen `  ( normh  o.  -h  )
)  =  ( MetOpen `  ( normh  o.  -h  )
)
4124, 25, 40hhlm 25792 . . . . . . 7  |-  ~~>v  =  ( ( ~~> t `  ( MetOpen
`  ( normh  o.  -h  ) ) )  |`  ( ~H  ^m  NN ) )
42 resss 5295 . . . . . . 7  |-  ( ( ~~> t `  ( MetOpen `  ( normh  o.  -h  )
) )  |`  ( ~H  ^m  NN ) ) 
C_  ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) )
4341, 42eqsstri 3534 . . . . . 6  |-  ~~>v  C_  ( ~~> t `  ( MetOpen `  ( normh  o.  -h  ) ) )
4443ssbri 4489 . . . . 5  |-  ( f 
~~>v  (  ~~>v  `  f )  ->  f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )
)
4539, 44syl 16 . . . 4  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )
)
468, 40, 1metrest 20762 . . . . . . 7  |-  ( ( ( normh  o.  -h  )  e.  ( *Met `  ~H )  /\  H  C_  ~H )  -> 
( ( MetOpen `  ( normh  o.  -h  ) )t  H )  =  ( MetOpen `  D ) )
4712, 17, 46mp2an 672 . . . . . 6  |-  ( (
MetOpen `  ( normh  o.  -h  ) )t  H )  =  (
MetOpen `  D )
4847eqcomi 2480 . . . . 5  |-  ( MetOpen `  D )  =  ( ( MetOpen `  ( normh  o. 
-h  ) )t  H )
49 nnuz 11113 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
504a1i 11 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  ->  H  e.  CH )
5140mopntop 20678 . . . . . 6  |-  ( (
normh  o.  -h  )  e.  ( *Met `  ~H )  ->  ( MetOpen `  ( normh  o.  -h  )
)  e.  Top )
5212, 51mp1i 12 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( MetOpen `  ( normh  o. 
-h  ) )  e. 
Top )
53 fvex 5874 . . . . . . 7  |-  (  ~~>v  `  f )  e.  _V
5453chlimi 25828 . . . . . 6  |-  ( ( H  e.  CH  /\  f : NN --> H  /\  f  ~~>v  (  ~~>v  `  f
) )  ->  (  ~~>v 
`  f )  e.  H )
5550, 13, 39, 54syl3anc 1228 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
(  ~~>v  `  f )  e.  H )
56 1zzd 10891 . . . . 5  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
1  e.  ZZ )
5748, 49, 50, 52, 55, 56, 13lmss 19565 . . . 4  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
( f ( ~~> t `  ( MetOpen `  ( normh  o. 
-h  ) ) ) (  ~~>v  `  f )  <->  f ( ~~> t `  ( MetOpen
`  D ) ) (  ~~>v  `  f )
) )
5845, 57mpbid 210 . . 3  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f ( ~~> t `  ( MetOpen `  D )
) (  ~~>v  `  f
) )
5930, 53breldm 5205 . . 3  |-  ( f ( ~~> t `  ( MetOpen
`  D ) ) (  ~~>v  `  f )  ->  f  e.  dom  ( ~~> t `  ( MetOpen `  D
) ) )
6058, 59syl 16 . 2  |-  ( ( f  e.  ( Cau `  D )  /\  f : NN --> H )  -> 
f  e.  dom  ( ~~> t `  ( MetOpen `  D
) ) )
611, 6, 60iscmet3i 21485 1  |-  D  e.  ( CMet `  H
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815    C_ wss 3476   <.cop 4033   class class class wbr 4447    X. cxp 4997   dom cdm 4999    |` cres 5001    o. ccom 5003   Fun wfun 5580   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   CCcc 9486   1c1 9489   NNcn 10532   ↾t crest 14672   *Metcxmt 18174   MetOpencmopn 18179   Topctop 19161   ~~> tclm 19493   Caucca 21427   CMetcms 21428   IndMetcims 25160   ~Hchil 25512    +h cva 25513    .h csm 25514   normhcno 25516    -h cmv 25518   Cauchyccau 25519    ~~>v chli 25520   CHcch 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cc 8811  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568  ax-hilex 25592  ax-hfvadd 25593  ax-hvcom 25594  ax-hvass 25595  ax-hv0cl 25596  ax-hvaddid 25597  ax-hfvmul 25598  ax-hvmulid 25599  ax-hvmulass 25600  ax-hvdistr1 25601  ax-hvdistr2 25602  ax-hvmul0 25603  ax-hfi 25672  ax-his1 25675  ax-his2 25676  ax-his3 25677  ax-his4 25678  ax-hcompl 25795
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ico 11531  df-icc 11532  df-fz 11669  df-fl 11893  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-rest 14674  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-top 19166  df-bases 19168  df-topon 19169  df-ntr 19287  df-nei 19365  df-lm 19496  df-haus 19582  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-cfil 21429  df-cau 21430  df-cmet 21431  df-grpo 24869  df-gid 24870  df-ginv 24871  df-gdiv 24872  df-ablo 24960  df-subgo 24980  df-vc 25115  df-nv 25161  df-va 25164  df-ba 25165  df-sm 25166  df-0v 25167  df-vs 25168  df-nmcv 25169  df-ims 25170  df-ssp 25311  df-hnorm 25561  df-hba 25562  df-hvsub 25564  df-hlim 25565  df-hcau 25566  df-sh 25800  df-ch 25815  df-ch0 25847
This theorem is referenced by:  hhssbn  25872
  Copyright terms: Public domain W3C validator