HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Unicode version

Theorem hhph 25621
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
Assertion
Ref Expression
hhph  |-  U  e.  CPreHil
OLD

Proof of Theorem hhph
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . 3  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
21hhnv 25608 . 2  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3 normpar 25598 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  x
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y ) ^ 2 ) ) ) )
4 hvsubval 25459 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
54fveq2d 5861 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  -h  y ) )  =  ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) )
65oveq1d 6290 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  -h  y ) ) ^ 2 )  =  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )
76oveq2d 6291 . . . . 5  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  -h  y ) ) ^
2 ) )  =  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) ) )
8 hvaddcl 25455 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
9 normcl 25568 . . . . . . . . 9  |-  ( ( x  +h  y )  e.  ~H  ->  ( normh `  ( x  +h  y ) )  e.  RR )
108, 9syl 16 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  +h  y ) )  e.  RR )
1110recnd 9611 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  +h  y ) )  e.  CC )
1211sqcld 12263 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  +h  y ) ) ^ 2 )  e.  CC )
13 hvsubcl 25460 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  e.  ~H )
14 normcl 25568 . . . . . . . . 9  |-  ( ( x  -h  y )  e.  ~H  ->  ( normh `  ( x  -h  y ) )  e.  RR )
1514recnd 9611 . . . . . . . 8  |-  ( ( x  -h  y )  e.  ~H  ->  ( normh `  ( x  -h  y ) )  e.  CC )
1613, 15syl 16 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  -h  y ) )  e.  CC )
1716sqcld 12263 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  -h  y ) ) ^ 2 )  e.  CC )
1812, 17addcomd 9770 . . . . 5  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  -h  y ) ) ^
2 ) )  =  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) ) )
197, 18eqtr3d 2503 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) )  =  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) ) )
20 normcl 25568 . . . . . . 7  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
2120recnd 9611 . . . . . 6  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  CC )
2221sqcld 12263 . . . . 5  |-  ( x  e.  ~H  ->  (
( normh `  x ) ^ 2 )  e.  CC )
23 normcl 25568 . . . . . . 7  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
2423recnd 9611 . . . . . 6  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  CC )
2524sqcld 12263 . . . . 5  |-  ( y  e.  ~H  ->  (
( normh `  y ) ^ 2 )  e.  CC )
26 2cn 10595 . . . . . 6  |-  2  e.  CC
27 adddi 9570 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( normh `  x
) ^ 2 )  e.  CC  /\  (
( normh `  y ) ^ 2 )  e.  CC )  ->  (
2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) )  =  ( ( 2  x.  (
( normh `  x ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y
) ^ 2 ) ) ) )
2826, 27mp3an1 1306 . . . . 5  |-  ( ( ( ( normh `  x
) ^ 2 )  e.  CC  /\  (
( normh `  y ) ^ 2 )  e.  CC )  ->  (
2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) )  =  ( ( 2  x.  (
( normh `  x ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y
) ^ 2 ) ) ) )
2922, 25, 28syl2an 477 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( 2  x.  (
( ( normh `  x
) ^ 2 )  +  ( ( normh `  y ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( normh `  x
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y ) ^ 2 ) ) ) )
303, 19, 293eqtr4d 2511 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) )  =  ( 2  x.  (
( ( normh `  x
) ^ 2 )  +  ( ( normh `  y ) ^ 2 ) ) ) )
3130rgen2a 2884 . 2  |-  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) )
32 hilablo 25603 . . . 4  |-  +h  e.  AbelOp
3332elexi 3116 . . 3  |-  +h  e.  _V
34 hvmulex 25454 . . 3  |-  .h  e.  _V
35 normf 25566 . . . 4  |-  normh : ~H --> RR
36 ax-hilex 25442 . . . 4  |-  ~H  e.  _V
37 fex 6124 . . . 4  |-  ( (
normh : ~H --> RR  /\  ~H  e.  _V )  ->  normh  e.  _V )
3835, 36, 37mp2an 672 . . 3  |-  normh  e.  _V
39 hhnv.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
4039eleq1i 2537 . . . 4  |-  ( U  e.  CPreHil OLD  <->  <. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD )
41 ablogrpo 24812 . . . . . . 7  |-  (  +h  e.  AbelOp  ->  +h  e.  GrpOp )
4232, 41ax-mp 5 . . . . . 6  |-  +h  e.  GrpOp
43 ax-hfvadd 25443 . . . . . . 7  |-  +h  :
( ~H  X.  ~H )
--> ~H
4443fdmi 5727 . . . . . 6  |-  dom  +h  =  ( ~H  X.  ~H )
4542, 44grporn 24740 . . . . 5  |-  ~H  =  ran  +h
4645isphg 25258 . . . 4  |-  ( (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e. 
_V )  ->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) ) ) ) )
4740, 46syl5bb 257 . . 3  |-  ( (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e. 
_V )  ->  ( U  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) ) ) ) )
4833, 34, 38, 47mp3an 1319 . 2  |-  ( U  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e.  ~H  (
( ( normh `  (
x  +h  y ) ) ^ 2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) ) ) )
492, 31, 48mpbir2an 913 1  |-  U  e.  CPreHil
OLD
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106   <.cop 4026    X. cxp 4990   -->wf 5575   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   1c1 9482    + caddc 9484    x. cmul 9486   -ucneg 9795   2c2 10574   ^cexp 12122   GrpOpcgr 24714   AbelOpcablo 24809   NrmCVeccnv 25003   CPreHil OLDccphlo 25253   ~Hchil 25362    +h cva 25363    .h csm 25364   normhcno 25366    -h cmv 25368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-hilex 25442  ax-hfvadd 25443  ax-hvcom 25444  ax-hvass 25445  ax-hv0cl 25446  ax-hvaddid 25447  ax-hfvmul 25448  ax-hvmulid 25449  ax-hvmulass 25450  ax-hvdistr1 25451  ax-hvdistr2 25452  ax-hvmul0 25453  ax-hfi 25522  ax-his1 25525  ax-his2 25526  ax-his3 25527  ax-his4 25528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-grpo 24719  df-gid 24720  df-ablo 24810  df-vc 24965  df-nv 25011  df-ph 25254  df-hnorm 25411  df-hvsub 25414
This theorem is referenced by:  bcsiHIL  25623  hhhl  25647  hhssph  25716  pjhthlem2  25836
  Copyright terms: Public domain W3C validator