HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Unicode version

Theorem hhph 24548
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
Assertion
Ref Expression
hhph  |-  U  e.  CPreHil
OLD

Proof of Theorem hhph
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . 3  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
21hhnv 24535 . 2  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
3 normpar 24525 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  x
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y ) ^ 2 ) ) ) )
4 hvsubval 24386 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  =  ( x  +h  ( -u 1  .h  y ) ) )
54fveq2d 5690 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  -h  y ) )  =  ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) )
65oveq1d 6101 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  -h  y ) ) ^ 2 )  =  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )
76oveq2d 6102 . . . . 5  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  -h  y ) ) ^
2 ) )  =  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) ) )
8 hvaddcl 24382 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  e.  ~H )
9 normcl 24495 . . . . . . . . 9  |-  ( ( x  +h  y )  e.  ~H  ->  ( normh `  ( x  +h  y ) )  e.  RR )
108, 9syl 16 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  +h  y ) )  e.  RR )
1110recnd 9404 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  +h  y ) )  e.  CC )
1211sqcld 11998 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  +h  y ) ) ^ 2 )  e.  CC )
13 hvsubcl 24387 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  e.  ~H )
14 normcl 24495 . . . . . . . . 9  |-  ( ( x  -h  y )  e.  ~H  ->  ( normh `  ( x  -h  y ) )  e.  RR )
1514recnd 9404 . . . . . . . 8  |-  ( ( x  -h  y )  e.  ~H  ->  ( normh `  ( x  -h  y ) )  e.  CC )
1613, 15syl 16 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( x  -h  y ) )  e.  CC )
1716sqcld 11998 . . . . . 6  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  (
x  -h  y ) ) ^ 2 )  e.  CC )
1812, 17addcomd 9563 . . . . 5  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  -h  y ) ) ^
2 ) )  =  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) ) )
197, 18eqtr3d 2472 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) )  =  ( ( ( normh `  ( x  -h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  y ) ) ^
2 ) ) )
20 normcl 24495 . . . . . . 7  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
2120recnd 9404 . . . . . 6  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  CC )
2221sqcld 11998 . . . . 5  |-  ( x  e.  ~H  ->  (
( normh `  x ) ^ 2 )  e.  CC )
23 normcl 24495 . . . . . . 7  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
2423recnd 9404 . . . . . 6  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  CC )
2524sqcld 11998 . . . . 5  |-  ( y  e.  ~H  ->  (
( normh `  y ) ^ 2 )  e.  CC )
26 2cn 10384 . . . . . 6  |-  2  e.  CC
27 adddi 9363 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( normh `  x
) ^ 2 )  e.  CC  /\  (
( normh `  y ) ^ 2 )  e.  CC )  ->  (
2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) )  =  ( ( 2  x.  (
( normh `  x ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y
) ^ 2 ) ) ) )
2826, 27mp3an1 1301 . . . . 5  |-  ( ( ( ( normh `  x
) ^ 2 )  e.  CC  /\  (
( normh `  y ) ^ 2 )  e.  CC )  ->  (
2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) )  =  ( ( 2  x.  (
( normh `  x ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y
) ^ 2 ) ) ) )
2922, 25, 28syl2an 477 . . . 4  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( 2  x.  (
( ( normh `  x
) ^ 2 )  +  ( ( normh `  y ) ^ 2 ) ) )  =  ( ( 2  x.  ( ( normh `  x
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  y ) ^ 2 ) ) ) )
303, 19, 293eqtr4d 2480 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normh `  ( x  +h  y
) ) ^ 2 )  +  ( (
normh `  ( x  +h  ( -u 1  .h  y
) ) ) ^
2 ) )  =  ( 2  x.  (
( ( normh `  x
) ^ 2 )  +  ( ( normh `  y ) ^ 2 ) ) ) )
3130rgen2a 2777 . 2  |-  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) )
32 hilablo 24530 . . . 4  |-  +h  e.  AbelOp
3332elexi 2977 . . 3  |-  +h  e.  _V
34 hvmulex 24381 . . 3  |-  .h  e.  _V
35 normf 24493 . . . 4  |-  normh : ~H --> RR
36 ax-hilex 24369 . . . 4  |-  ~H  e.  _V
37 fex 5945 . . . 4  |-  ( (
normh : ~H --> RR  /\  ~H  e.  _V )  ->  normh  e.  _V )
3835, 36, 37mp2an 672 . . 3  |-  normh  e.  _V
39 hhnv.1 . . . . 5  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
4039eleq1i 2501 . . . 4  |-  ( U  e.  CPreHil OLD  <->  <. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD )
41 ablogrpo 23739 . . . . . . 7  |-  (  +h  e.  AbelOp  ->  +h  e.  GrpOp )
4232, 41ax-mp 5 . . . . . 6  |-  +h  e.  GrpOp
43 ax-hfvadd 24370 . . . . . . 7  |-  +h  :
( ~H  X.  ~H )
--> ~H
4443fdmi 5559 . . . . . 6  |-  dom  +h  =  ( ~H  X.  ~H )
4542, 44grporn 23667 . . . . 5  |-  ~H  =  ran  +h
4645isphg 24185 . . . 4  |-  ( (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e. 
_V )  ->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) ) ) ) )
4740, 46syl5bb 257 . . 3  |-  ( (  +h  e.  _V  /\  .h  e.  _V  /\  normh  e. 
_V )  ->  ( U  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( (
normh `  ( x  +h  y ) ) ^
2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( (
normh `  y ) ^
2 ) ) ) ) ) )
4833, 34, 38, 47mp3an 1314 . 2  |-  ( U  e.  CPreHil OLD  <->  ( <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec  /\  A. x  e.  ~H  A. y  e.  ~H  (
( ( normh `  (
x  +h  y ) ) ^ 2 )  +  ( ( normh `  ( x  +h  ( -u 1  .h  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( normh `  x ) ^ 2 )  +  ( ( normh `  y
) ^ 2 ) ) ) ) )
492, 31, 48mpbir2an 911 1  |-  U  e.  CPreHil
OLD
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   _Vcvv 2967   <.cop 3878    X. cxp 4833   -->wf 5409   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   1c1 9275    + caddc 9277    x. cmul 9279   -ucneg 9588   2c2 10363   ^cexp 11857   GrpOpcgr 23641   AbelOpcablo 23736   NrmCVeccnv 23930   CPreHil OLDccphlo 24180   ~Hchil 24289    +h cva 24290    .h csm 24291   normhcno 24293    -h cmv 24295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-hilex 24369  ax-hfvadd 24370  ax-hvcom 24371  ax-hvass 24372  ax-hv0cl 24373  ax-hvaddid 24374  ax-hfvmul 24375  ax-hvmulid 24376  ax-hvmulass 24377  ax-hvdistr1 24378  ax-hvdistr2 24379  ax-hvmul0 24380  ax-hfi 24449  ax-his1 24452  ax-his2 24453  ax-his3 24454  ax-his4 24455
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-grpo 23646  df-gid 23647  df-ablo 23737  df-vc 23892  df-nv 23938  df-ph 24181  df-hnorm 24338  df-hvsub 24341
This theorem is referenced by:  bcsiHIL  24550  hhhl  24574  hhssph  24643  pjhthlem2  24763
  Copyright terms: Public domain W3C validator