Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Structured version   Unicode version

Theorem hgmapval 36687
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 36682. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h  |-  H  =  ( LHyp `  K
)
hgmapfval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hgmapfval.v  |-  V  =  ( Base `  U
)
hgmapfval.t  |-  .x.  =  ( .s `  U )
hgmapfval.r  |-  R  =  (Scalar `  U )
hgmapfval.b  |-  B  =  ( Base `  R
)
hgmapfval.c  |-  C  =  ( (LCDual `  K
) `  W )
hgmapfval.s  |-  .xb  =  ( .s `  C )
hgmapfval.m  |-  M  =  ( (HDMap `  K
) `  W )
hgmapfval.i  |-  I  =  ( (HGMap `  K
) `  W )
hgmapfval.k  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
hgmapval.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
hgmapval  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Distinct variable groups:    y, v, K    v, B, y    v, M, y    v, U, y   
v, V    v, W, y    v, X, y
Allowed substitution hints:    ph( y, v)    C( y, v)    R( y, v)    .xb ( y, v)    .x. ( y,
v)    H( y, v)    I(
y, v)    V( y)    Y( y, v)

Proof of Theorem hgmapval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hgmapfval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hgmapfval.v . . . 4  |-  V  =  ( Base `  U
)
4 hgmapfval.t . . . 4  |-  .x.  =  ( .s `  U )
5 hgmapfval.r . . . 4  |-  R  =  (Scalar `  U )
6 hgmapfval.b . . . 4  |-  B  =  ( Base `  R
)
7 hgmapfval.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hgmapfval.s . . . 4  |-  .xb  =  ( .s `  C )
9 hgmapfval.m . . . 4  |-  M  =  ( (HDMap `  K
) `  W )
10 hgmapfval.i . . . 4  |-  I  =  ( (HGMap `  K
) `  W )
11 hgmapfval.k . . . 4  |-  ( ph  ->  ( K  e.  Y  /\  W  e.  H
) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 36686 . . 3  |-  ( ph  ->  I  =  ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) )
1312fveq1d 5866 . 2  |-  ( ph  ->  ( I `  X
)  =  ( ( x  e.  B  |->  (
iota_ y  e.  B  A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X ) )
14 hgmapval.x . . 3  |-  ( ph  ->  X  e.  B )
15 riotaex 6247 . . 3  |-  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V
16 oveq1 6289 . . . . . . . 8  |-  ( x  =  X  ->  (
x  .x.  v )  =  ( X  .x.  v ) )
1716fveq2d 5868 . . . . . . 7  |-  ( x  =  X  ->  ( M `  ( x  .x.  v ) )  =  ( M `  ( X  .x.  v ) ) )
1817eqeq1d 2469 . . . . . 6  |-  ( x  =  X  ->  (
( M `  (
x  .x.  v )
)  =  ( y 
.xb  ( M `  v ) )  <->  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
1918ralbidv 2903 . . . . 5  |-  ( x  =  X  ->  ( A. v  e.  V  ( M `  ( x 
.x.  v ) )  =  ( y  .xb  ( M `  v ) )  <->  A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
2019riotabidv 6245 . . . 4  |-  ( x  =  X  ->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y  .xb  ( M `  v )
) )  =  (
iota_ y  e.  B  A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) ) )
21 eqid 2467 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
2220, 21fvmptg 5946 . . 3  |-  ( ( X  e.  B  /\  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X 
.x.  v ) )  =  ( y  .xb  ( M `  v ) ) )  e.  _V )  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2314, 15, 22sylancl 662 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( x  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) ) `  X )  =  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v ) )  =  ( y 
.xb  ( M `  v ) ) ) )
2413, 23eqtrd 2508 1  |-  ( ph  ->  ( I `  X
)  =  ( iota_ y  e.  B  A. v  e.  V  ( M `  ( X  .x.  v
) )  =  ( y  .xb  ( M `  v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    |-> cmpt 4505   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14486  Scalarcsca 14554   .scvsca 14555   LHypclh 34780   DVecHcdvh 35875  LCDualclcd 36383  HDMapchdma 36590  HGMapchg 36683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-hgmap 36684
This theorem is referenced by:  hgmapcl  36689  hgmapvs  36691
  Copyright terms: Public domain W3C validator