HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfsmval Structured version   Unicode version

Theorem hfsmval 27383
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hfsmval  |-  ( ( S : ~H --> CC  /\  T : ~H --> CC )  ->  ( S  +fn  T )  =  ( x  e.  ~H  |->  ( ( S `  x )  +  ( T `  x ) ) ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem hfsmval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 9622 . . 3  |-  CC  e.  _V
2 ax-hilex 26644 . . 3  |-  ~H  e.  _V
31, 2elmap 7506 . 2  |-  ( S  e.  ( CC  ^m  ~H )  <->  S : ~H --> CC )
41, 2elmap 7506 . 2  |-  ( T  e.  ( CC  ^m  ~H )  <->  T : ~H --> CC )
5 fveq1 5878 . . . . 5  |-  ( f  =  S  ->  (
f `  x )  =  ( S `  x ) )
65oveq1d 6318 . . . 4  |-  ( f  =  S  ->  (
( f `  x
)  +  ( g `
 x ) )  =  ( ( S `
 x )  +  ( g `  x
) ) )
76mpteq2dv 4509 . . 3  |-  ( f  =  S  ->  (
x  e.  ~H  |->  ( ( f `  x
)  +  ( g `
 x ) ) )  =  ( x  e.  ~H  |->  ( ( S `  x )  +  ( g `  x ) ) ) )
8 fveq1 5878 . . . . 5  |-  ( g  =  T  ->  (
g `  x )  =  ( T `  x ) )
98oveq2d 6319 . . . 4  |-  ( g  =  T  ->  (
( S `  x
)  +  ( g `
 x ) )  =  ( ( S `
 x )  +  ( T `  x
) ) )
109mpteq2dv 4509 . . 3  |-  ( g  =  T  ->  (
x  e.  ~H  |->  ( ( S `  x
)  +  ( g `
 x ) ) )  =  ( x  e.  ~H  |->  ( ( S `  x )  +  ( T `  x ) ) ) )
11 df-hfsum 27378 . . 3  |-  +fn  =  ( f  e.  ( CC  ^m  ~H ) ,  g  e.  ( CC  ^m  ~H )  |->  ( x  e.  ~H  |->  ( ( f `  x
)  +  ( g `
 x ) ) ) )
122mptex 6149 . . 3  |-  ( x  e.  ~H  |->  ( ( S `  x )  +  ( T `  x ) ) )  e.  _V
137, 10, 11, 12ovmpt2 6444 . 2  |-  ( ( S  e.  ( CC 
^m  ~H )  /\  T  e.  ( CC  ^m  ~H ) )  ->  ( S  +fn  T )  =  ( x  e.  ~H  |->  ( ( S `  x )  +  ( T `  x ) ) ) )
143, 4, 13syl2anbr 483 1  |-  ( ( S : ~H --> CC  /\  T : ~H --> CC )  ->  ( S  +fn  T )  =  ( x  e.  ~H  |->  ( ( S `  x )  +  ( T `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1869    |-> cmpt 4480   -->wf 5595   ` cfv 5599  (class class class)co 6303    ^m cmap 7478   CCcc 9539    + caddc 9544   ~Hchil 26564    +fn chfs 26586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-hilex 26644
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-map 7480  df-hfsum 27378
This theorem is referenced by:  hfsval  27388
  Copyright terms: Public domain W3C validator