Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Unicode version

Theorem heiborlem10 28644
Description: Lemma for heibor 28645. The last remaining piece of the proof is to find an element  C such that  C G 0, i.e. 
C is an element of  ( F ` 
0 ) that has no finite subcover, which is true by heiborlem1 28635, since  ( F `  0 ) is a finite cover of  X, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of  U that covers  X, i.e.  X is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
Assertion
Ref Expression
heiborlem10  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Distinct variable groups:    y, n, u, F    m, n, u, v, y, z, D    B, n, u, v, y   
m, J, n, u, v, y, z    U, n, u, v, y, z   
m, X, n, u, v, y, z    n, K, y, z    ph, v
Allowed substitution hints:    ph( y, z, u, m, n)    B( z, m)    U( m)    F( z, v, m)    G( y,
z, v, u, m, n)    K( v, u, m)

Proof of Theorem heiborlem10
Dummy variables  t  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
2 0nn0 10590 . . . . . . . 8  |-  0  e.  NN0
3 inss2 3568 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
Fin
4 ffvelrn 5838 . . . . . . . . 9  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  ( ~P X  i^i  Fin ) )
53, 4sseldi 3351 . . . . . . . 8  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  Fin )
61, 2, 5sylancl 657 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  Fin )
7 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
8 fveq2 5688 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( F `  n )  =  ( F ` 
0 ) )
9 oveq2 6098 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
y B n )  =  ( y B 0 ) )
108, 9iuneq12d 4193 . . . . . . . . . . 11  |-  ( n  =  0  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
1110eqeq2d 2452 . . . . . . . . . 10  |-  ( n  =  0  ->  ( X  =  U_ y  e.  ( F `  n
) ( y B n )  <->  X  =  U_ y  e.  ( F `
 0 ) ( y B 0 ) ) )
1211rspccva 3069 . . . . . . . . 9  |-  ( ( A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n )  /\  0  e.  NN0 )  ->  X  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
137, 2, 12sylancl 657 . . . . . . . 8  |-  ( ph  ->  X  =  U_ y  e.  ( F `  0
) ( y B 0 ) )
14 eqimss 3405 . . . . . . . 8  |-  ( X  =  U_ y  e.  ( F `  0
) ( y B 0 )  ->  X  C_ 
U_ y  e.  ( F `  0 ) ( y B 0 ) )
1513, 14syl 16 . . . . . . 7  |-  ( ph  ->  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )
16 heibor.1 . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
17 heibor.3 . . . . . . . . . 10  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
18 ovex 6115 . . . . . . . . . 10  |-  ( y B 0 )  e. 
_V
1916, 17, 18heiborlem1 28635 . . . . . . . . 9  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. y  e.  ( F `  0
) ( y B 0 )  e.  K
)
20 oveq1 6097 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y B 0 )  =  ( x B 0 ) )
2120eleq1d 2507 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y B 0 )  e.  K  <->  ( x B 0 )  e.  K ) )
2221cbvrexv 2946 . . . . . . . . 9  |-  ( E. y  e.  ( F `
 0 ) ( y B 0 )  e.  K  <->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
2319, 22sylib 196 . . . . . . . 8  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
24233expia 1184 . . . . . . 7  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )  -> 
( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
256, 15, 24syl2anc 656 . . . . . 6  |-  ( ph  ->  ( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
2625adantr 462 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
) )
27 heibor.4 . . . . . . . . . 10  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
28 vex 2973 . . . . . . . . . 10  |-  x  e. 
_V
29 c0ex 9376 . . . . . . . . . 10  |-  0  e.  _V
3016, 17, 27, 28, 29heiborlem2 28636 . . . . . . . . 9  |-  ( x G 0  <->  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )
31 heibor.5 . . . . . . . . . . . 12  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
32 heibor.6 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3316, 17, 27, 31, 32, 1, 7heiborlem3 28637 . . . . . . . . . . 11  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3433ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  E. g A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3532ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  D  e.  ( CMet `  X
) )
361ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  F : NN0 --> ( ~P X  i^i  Fin ) )
377ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n ) ( y B n ) )
38 simprr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
39 fveq2 5688 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
g `  x )  =  ( g `  t ) )
40 fveq2 5688 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( 2nd `  x )  =  ( 2nd `  t
) )
4140oveq1d 6105 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( 2nd `  x
)  +  1 )  =  ( ( 2nd `  t )  +  1 ) )
4239, 41breq12d 4302 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  <->  ( g `  t ) G ( ( 2nd `  t
)  +  1 ) ) )
43 fveq2 5688 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( B `  x )  =  ( B `  t ) )
4439, 41oveq12d 6108 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) )  =  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )
4543, 44ineq12d 3550 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( B `  x
)  i^i  ( (
g `  x ) B ( ( 2nd `  x )  +  1 ) ) )  =  ( ( B `  t )  i^i  (
( g `  t
) B ( ( 2nd `  t )  +  1 ) ) ) )
4645eleq1d 2507 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K  <->  ( ( B `  t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4742, 46anbi12d 705 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  <->  ( ( g `
 t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) ) )
4847cbvralv 2945 . . . . . . . . . . . . . 14  |-  ( A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K )  <->  A. t  e.  G  ( ( g `  t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4938, 48sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. t  e.  G  ( (
g `  t ) G ( ( 2nd `  t )  +  1 )  /\  ( ( B `  t )  i^i  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
50 simprl 750 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  x G 0 )
51 eqeq1 2447 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  =  0  <->  m  =  0 ) )
52 oveq1 6097 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  -  1 )  =  ( m  - 
1 ) )
5351, 52ifbieq2d 3811 . . . . . . . . . . . . . . 15  |-  ( g  =  m  ->  if ( g  =  0 ,  x ,  ( g  -  1 ) )  =  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
5453cbvmptv 4380 . . . . . . . . . . . . . 14  |-  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
55 seqeq3 11807 . . . . . . . . . . . . . 14  |-  ( ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )  ->  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) ) )
5654, 55ax-mp 5 . . . . . . . . . . . . 13  |-  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) )
57 eqid 2441 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  <. (  seq 0 ( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) ) `  n ) ,  ( 3  /  ( 2 ^ n ) )
>. )  =  (
n  e.  NN  |->  <.
(  seq 0 ( g ,  ( g  e. 
NN0  |->  if ( g  =  0 ,  x ,  ( g  - 
1 ) ) ) ) `  n ) ,  ( 3  / 
( 2 ^ n
) ) >. )
58 simplrl 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U  C_  J )
59 cmetmet 20756 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
60 metxmet 19868 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
6116mopnuni 19975 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
6232, 59, 60, 614syl 21 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  =  U. J
)
6362adantr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  X  =  U. J )
64 simprr 751 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. J  =  U. U )
6563, 64eqtr2d 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. U  =  X )
6665adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U. U  =  X )
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 28643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  -.  X  e.  K )
6867expr 612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
6968exlimdv 1695 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( E. g A. x  e.  G  ( ( g `
 x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
7034, 69mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  -.  X  e.  K )
7130, 70sylan2br 473 . . . . . . . 8  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )  ->  -.  X  e.  K
)
72713exp2 1200 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( 0  e. 
NN0  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) ) )
732, 72mpi 17 . . . . . 6  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) )
7473rexlimdv 2838 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. x  e.  ( F `  0
) ( x B 0 )  e.  K  ->  -.  X  e.  K
) )
7526, 74syld 44 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  -.  X  e.  K ) )
7675pm2.01d 169 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  -.  X  e.  K )
77 elfvdm 5713 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
78 sseq1 3374 . . . . . . . . 9  |-  ( u  =  X  ->  (
u  C_  U. v  <->  X 
C_  U. v ) )
7978rexbidv 2734 . . . . . . . 8  |-  ( u  =  X  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v ) )
8079notbid 294 . . . . . . 7  |-  ( u  =  X  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8180, 17elab2g 3105 . . . . . 6  |-  ( X  e.  dom  CMet  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8232, 77, 813syl 20 . . . . 5  |-  ( ph  ->  ( X  e.  K  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8382adantr 462 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8483con2bid 329 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  -.  X  e.  K ) )
8576, 84mpbird 232 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
)
8662ad2antrr 720 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  X  =  U. J )
8786sseq1d 3380 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  C_  U. v ) )
88 inss1 3567 . . . . . . . . 9  |-  ( ~P U  i^i  Fin )  C_ 
~P U
8988sseli 3349 . . . . . . . 8  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  e.  ~P U )
9089elpwid 3867 . . . . . . 7  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  C_  U )
91 simprl 750 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U  C_  J
)
92 sstr 3361 . . . . . . . 8  |-  ( ( v  C_  U  /\  U  C_  J )  -> 
v  C_  J )
9392unissd 4112 . . . . . . 7  |-  ( ( v  C_  U  /\  U  C_  J )  ->  U. v  C_  U. J
)
9490, 91, 93syl2anr 475 . . . . . 6  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  U. v  C_ 
U. J )
9594biantrud 504 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) ) )
96 eqss 3368 . . . . 5  |-  ( U. J  =  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) )
9795, 96syl6bbr 263 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  U. J  =  U. v
) )
9887, 97bitrd 253 . . 3  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  = 
U. v ) )
9998rexbidva 2730 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v ) )
10085, 99mpbid 210 1  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   {cab 2427   A.wral 2713   E.wrex 2714    i^i cin 3324    C_ wss 3325   ifcif 3788   ~Pcpw 3857   <.cop 3880   U.cuni 4088   U_ciun 4168   class class class wbr 4289   {copab 4346    e. cmpt 4347   dom cdm 4836   -->wf 5411   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   2ndc2nd 6575   Fincfn 7306   0cc0 9278   1c1 9279    + caddc 9281    - cmin 9591    / cdiv 9989   NNcn 10318   2c2 10367   3c3 10368   NN0cn0 10575    seqcseq 11802   ^cexp 11861   *Metcxmt 17760   Metcme 17761   ballcbl 17762   MetOpencmopn 17765   CMetcms 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cc 8600  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ico 11302  df-icc 11303  df-fl 11638  df-seq 11803  df-exp 11862  df-rest 14357  df-topgen 14378  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-top 18462  df-bases 18464  df-topon 18465  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lm 18792  df-haus 18878  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-cfil 20725  df-cau 20726  df-cmet 20727
This theorem is referenced by:  heibor  28645
  Copyright terms: Public domain W3C validator