Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Visualization version   Unicode version

Theorem heiborlem10 32152
Description: Lemma for heibor 32153. The last remaining piece of the proof is to find an element  C such that  C G 0, i.e. 
C is an element of  ( F ` 
0 ) that has no finite subcover, which is true by heiborlem1 32143, since  ( F `  0 ) is a finite cover of  X, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of  U that covers  X, i.e.  X is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
Assertion
Ref Expression
heiborlem10  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Distinct variable groups:    y, n, u, F    m, n, u, v, y, z, D    B, n, u, v, y   
m, J, n, u, v, y, z    U, n, u, v, y, z   
m, X, n, u, v, y, z    n, K, y, z    ph, v
Allowed substitution hints:    ph( y, z, u, m, n)    B( z, m)    U( m)    F( z, v, m)    G( y,
z, v, u, m, n)    K( v, u, m)

Proof of Theorem heiborlem10
Dummy variables  t  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
2 0nn0 10884 . . . . . . . 8  |-  0  e.  NN0
3 inss2 3653 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
Fin
4 ffvelrn 6020 . . . . . . . . 9  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  ( ~P X  i^i  Fin ) )
53, 4sseldi 3430 . . . . . . . 8  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  Fin )
61, 2, 5sylancl 668 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  Fin )
7 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
8 fveq2 5865 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( F `  n )  =  ( F ` 
0 ) )
9 oveq2 6298 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
y B n )  =  ( y B 0 ) )
108, 9iuneq12d 4304 . . . . . . . . . . 11  |-  ( n  =  0  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
1110eqeq2d 2461 . . . . . . . . . 10  |-  ( n  =  0  ->  ( X  =  U_ y  e.  ( F `  n
) ( y B n )  <->  X  =  U_ y  e.  ( F `
 0 ) ( y B 0 ) ) )
1211rspccva 3149 . . . . . . . . 9  |-  ( ( A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n )  /\  0  e.  NN0 )  ->  X  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
137, 2, 12sylancl 668 . . . . . . . 8  |-  ( ph  ->  X  =  U_ y  e.  ( F `  0
) ( y B 0 ) )
14 eqimss 3484 . . . . . . . 8  |-  ( X  =  U_ y  e.  ( F `  0
) ( y B 0 )  ->  X  C_ 
U_ y  e.  ( F `  0 ) ( y B 0 ) )
1513, 14syl 17 . . . . . . 7  |-  ( ph  ->  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )
16 heibor.1 . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
17 heibor.3 . . . . . . . . . 10  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
18 ovex 6318 . . . . . . . . . 10  |-  ( y B 0 )  e. 
_V
1916, 17, 18heiborlem1 32143 . . . . . . . . 9  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. y  e.  ( F `  0
) ( y B 0 )  e.  K
)
20 oveq1 6297 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y B 0 )  =  ( x B 0 ) )
2120eleq1d 2513 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y B 0 )  e.  K  <->  ( x B 0 )  e.  K ) )
2221cbvrexv 3020 . . . . . . . . 9  |-  ( E. y  e.  ( F `
 0 ) ( y B 0 )  e.  K  <->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
2319, 22sylib 200 . . . . . . . 8  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
24233expia 1210 . . . . . . 7  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )  -> 
( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
256, 15, 24syl2anc 667 . . . . . 6  |-  ( ph  ->  ( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
2625adantr 467 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
) )
27 heibor.4 . . . . . . . . . 10  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
28 vex 3048 . . . . . . . . . 10  |-  x  e. 
_V
29 c0ex 9637 . . . . . . . . . 10  |-  0  e.  _V
3016, 17, 27, 28, 29heiborlem2 32144 . . . . . . . . 9  |-  ( x G 0  <->  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )
31 heibor.5 . . . . . . . . . . . 12  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
32 heibor.6 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3316, 17, 27, 31, 32, 1, 7heiborlem3 32145 . . . . . . . . . . 11  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3433ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  E. g A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3532ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  D  e.  ( CMet `  X
) )
361ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  F : NN0 --> ( ~P X  i^i  Fin ) )
377ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n ) ( y B n ) )
38 simprr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
39 fveq2 5865 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
g `  x )  =  ( g `  t ) )
40 fveq2 5865 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( 2nd `  x )  =  ( 2nd `  t
) )
4140oveq1d 6305 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( 2nd `  x
)  +  1 )  =  ( ( 2nd `  t )  +  1 ) )
4239, 41breq12d 4415 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  <->  ( g `  t ) G ( ( 2nd `  t
)  +  1 ) ) )
43 fveq2 5865 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( B `  x )  =  ( B `  t ) )
4439, 41oveq12d 6308 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) )  =  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )
4543, 44ineq12d 3635 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( B `  x
)  i^i  ( (
g `  x ) B ( ( 2nd `  x )  +  1 ) ) )  =  ( ( B `  t )  i^i  (
( g `  t
) B ( ( 2nd `  t )  +  1 ) ) ) )
4645eleq1d 2513 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K  <->  ( ( B `  t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4742, 46anbi12d 717 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  <->  ( ( g `
 t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) ) )
4847cbvralv 3019 . . . . . . . . . . . . . 14  |-  ( A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K )  <->  A. t  e.  G  ( ( g `  t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4938, 48sylib 200 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. t  e.  G  ( (
g `  t ) G ( ( 2nd `  t )  +  1 )  /\  ( ( B `  t )  i^i  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
50 simprl 764 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  x G 0 )
51 eqeq1 2455 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  =  0  <->  m  =  0 ) )
52 oveq1 6297 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  -  1 )  =  ( m  - 
1 ) )
5351, 52ifbieq2d 3906 . . . . . . . . . . . . . . 15  |-  ( g  =  m  ->  if ( g  =  0 ,  x ,  ( g  -  1 ) )  =  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
5453cbvmptv 4495 . . . . . . . . . . . . . 14  |-  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
55 seqeq3 12218 . . . . . . . . . . . . . 14  |-  ( ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )  ->  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) ) )
5654, 55ax-mp 5 . . . . . . . . . . . . 13  |-  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) )
57 eqid 2451 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  <. (  seq 0 ( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) ) `  n ) ,  ( 3  /  ( 2 ^ n ) )
>. )  =  (
n  e.  NN  |->  <.
(  seq 0 ( g ,  ( g  e. 
NN0  |->  if ( g  =  0 ,  x ,  ( g  - 
1 ) ) ) ) `  n ) ,  ( 3  / 
( 2 ^ n
) ) >. )
58 simplrl 770 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U  C_  J )
59 cmetmet 22256 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
60 metxmet 21349 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
6116mopnuni 21456 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
6232, 59, 60, 614syl 19 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  =  U. J
)
6362adantr 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  X  =  U. J )
64 simprr 766 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. J  =  U. U )
6563, 64eqtr2d 2486 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. U  =  X )
6665adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U. U  =  X )
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 32151 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  -.  X  e.  K )
6867expr 620 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
6968exlimdv 1779 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( E. g A. x  e.  G  ( ( g `
 x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
7034, 69mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  -.  X  e.  K )
7130, 70sylan2br 479 . . . . . . . 8  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )  ->  -.  X  e.  K
)
72713exp2 1227 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( 0  e. 
NN0  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) ) )
732, 72mpi 20 . . . . . 6  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) )
7473rexlimdv 2877 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. x  e.  ( F `  0
) ( x B 0 )  e.  K  ->  -.  X  e.  K
) )
7526, 74syld 45 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  -.  X  e.  K ) )
7675pm2.01d 173 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  -.  X  e.  K )
77 elfvdm 5891 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
78 sseq1 3453 . . . . . . . . 9  |-  ( u  =  X  ->  (
u  C_  U. v  <->  X 
C_  U. v ) )
7978rexbidv 2901 . . . . . . . 8  |-  ( u  =  X  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v ) )
8079notbid 296 . . . . . . 7  |-  ( u  =  X  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8180, 17elab2g 3187 . . . . . 6  |-  ( X  e.  dom  CMet  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8232, 77, 813syl 18 . . . . 5  |-  ( ph  ->  ( X  e.  K  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8382adantr 467 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8483con2bid 331 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  -.  X  e.  K ) )
8576, 84mpbird 236 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
)
8662ad2antrr 732 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  X  =  U. J )
8786sseq1d 3459 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  C_  U. v ) )
88 inss1 3652 . . . . . . . . 9  |-  ( ~P U  i^i  Fin )  C_ 
~P U
8988sseli 3428 . . . . . . . 8  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  e.  ~P U )
9089elpwid 3961 . . . . . . 7  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  C_  U )
91 simprl 764 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U  C_  J
)
92 sstr 3440 . . . . . . . 8  |-  ( ( v  C_  U  /\  U  C_  J )  -> 
v  C_  J )
9392unissd 4222 . . . . . . 7  |-  ( ( v  C_  U  /\  U  C_  J )  ->  U. v  C_  U. J
)
9490, 91, 93syl2anr 481 . . . . . 6  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  U. v  C_ 
U. J )
9594biantrud 510 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) ) )
96 eqss 3447 . . . . 5  |-  ( U. J  =  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) )
9795, 96syl6bbr 267 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  U. J  =  U. v
) )
9887, 97bitrd 257 . . 3  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  = 
U. v ) )
9998rexbidva 2898 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v ) )
10085, 99mpbid 214 1  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887   {cab 2437   A.wral 2737   E.wrex 2738    i^i cin 3403    C_ wss 3404   ifcif 3881   ~Pcpw 3951   <.cop 3974   U.cuni 4198   U_ciun 4278   class class class wbr 4402   {copab 4460    |-> cmpt 4461   dom cdm 4834   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   2ndc2nd 6792   Fincfn 7569   0cc0 9539   1c1 9540    + caddc 9542    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   3c3 10660   NN0cn0 10869    seqcseq 12213   ^cexp 12272   *Metcxmt 18955   Metcme 18956   ballcbl 18957   MetOpencmopn 18960   CMetcms 22224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cc 8865  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ico 11641  df-icc 11642  df-fl 12028  df-seq 12214  df-exp 12273  df-rest 15321  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-top 19921  df-bases 19922  df-topon 19923  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lm 20245  df-haus 20331  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-cfil 22225  df-cau 22226  df-cmet 22227
This theorem is referenced by:  heibor  32153
  Copyright terms: Public domain W3C validator