Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Unicode version

Theorem heiborlem10 30146
Description: Lemma for heibor 30147. The last remaining piece of the proof is to find an element  C such that  C G 0, i.e. 
C is an element of  ( F ` 
0 ) that has no finite subcover, which is true by heiborlem1 30137, since  ( F `  0 ) is a finite cover of  X, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of  U that covers  X, i.e.  X is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heibor.4  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
heibor.5  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
heibor.6  |-  ( ph  ->  D  e.  ( CMet `  X ) )
heibor.7  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
heibor.8  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
Assertion
Ref Expression
heiborlem10  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Distinct variable groups:    y, n, u, F    m, n, u, v, y, z, D    B, n, u, v, y   
m, J, n, u, v, y, z    U, n, u, v, y, z   
m, X, n, u, v, y, z    n, K, y, z    ph, v
Allowed substitution hints:    ph( y, z, u, m, n)    B( z, m)    U( m)    F( z, v, m)    G( y,
z, v, u, m, n)    K( v, u, m)

Proof of Theorem heiborlem10
Dummy variables  t  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8  |-  ( ph  ->  F : NN0 --> ( ~P X  i^i  Fin )
)
2 0nn0 10811 . . . . . . . 8  |-  0  e.  NN0
3 inss2 3719 . . . . . . . . 9  |-  ( ~P X  i^i  Fin )  C_ 
Fin
4 ffvelrn 6020 . . . . . . . . 9  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  ( ~P X  i^i  Fin ) )
53, 4sseldi 3502 . . . . . . . 8  |-  ( ( F : NN0 --> ( ~P X  i^i  Fin )  /\  0  e.  NN0 )  ->  ( F ` 
0 )  e.  Fin )
61, 2, 5sylancl 662 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  e.  Fin )
7 heibor.8 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n ) )
8 fveq2 5866 . . . . . . . . . . . 12  |-  ( n  =  0  ->  ( F `  n )  =  ( F ` 
0 ) )
9 oveq2 6293 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
y B n )  =  ( y B 0 ) )
108, 9iuneq12d 4351 . . . . . . . . . . 11  |-  ( n  =  0  ->  U_ y  e.  ( F `  n
) ( y B n )  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
1110eqeq2d 2481 . . . . . . . . . 10  |-  ( n  =  0  ->  ( X  =  U_ y  e.  ( F `  n
) ( y B n )  <->  X  =  U_ y  e.  ( F `
 0 ) ( y B 0 ) ) )
1211rspccva 3213 . . . . . . . . 9  |-  ( ( A. n  e.  NN0  X  =  U_ y  e.  ( F `  n
) ( y B n )  /\  0  e.  NN0 )  ->  X  =  U_ y  e.  ( F `  0 ) ( y B 0 ) )
137, 2, 12sylancl 662 . . . . . . . 8  |-  ( ph  ->  X  =  U_ y  e.  ( F `  0
) ( y B 0 ) )
14 eqimss 3556 . . . . . . . 8  |-  ( X  =  U_ y  e.  ( F `  0
) ( y B 0 )  ->  X  C_ 
U_ y  e.  ( F `  0 ) ( y B 0 ) )
1513, 14syl 16 . . . . . . 7  |-  ( ph  ->  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )
16 heibor.1 . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
17 heibor.3 . . . . . . . . . 10  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
18 ovex 6310 . . . . . . . . . 10  |-  ( y B 0 )  e. 
_V
1916, 17, 18heiborlem1 30137 . . . . . . . . 9  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. y  e.  ( F `  0
) ( y B 0 )  e.  K
)
20 oveq1 6292 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y B 0 )  =  ( x B 0 ) )
2120eleq1d 2536 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y B 0 )  e.  K  <->  ( x B 0 )  e.  K ) )
2221cbvrexv 3089 . . . . . . . . 9  |-  ( E. y  e.  ( F `
 0 ) ( y B 0 )  e.  K  <->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
2319, 22sylib 196 . . . . . . . 8  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 )  /\  X  e.  K )  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
)
24233expia 1198 . . . . . . 7  |-  ( ( ( F `  0
)  e.  Fin  /\  X  C_  U_ y  e.  ( F `  0
) ( y B 0 ) )  -> 
( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
256, 15, 24syl2anc 661 . . . . . 6  |-  ( ph  ->  ( X  e.  K  ->  E. x  e.  ( F `  0 ) ( x B 0 )  e.  K ) )
2625adantr 465 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  E. x  e.  ( F `  0
) ( x B 0 )  e.  K
) )
27 heibor.4 . . . . . . . . . 10  |-  G  =  { <. y ,  n >.  |  ( n  e. 
NN0  /\  y  e.  ( F `  n )  /\  ( y B n )  e.  K
) }
28 vex 3116 . . . . . . . . . 10  |-  x  e. 
_V
29 c0ex 9591 . . . . . . . . . 10  |-  0  e.  _V
3016, 17, 27, 28, 29heiborlem2 30138 . . . . . . . . 9  |-  ( x G 0  <->  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )
31 heibor.5 . . . . . . . . . . . 12  |-  B  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
32 heibor.6 . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ( CMet `  X ) )
3316, 17, 27, 31, 32, 1, 7heiborlem3 30139 . . . . . . . . . . 11  |-  ( ph  ->  E. g A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3433ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  E. g A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
3532ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  D  e.  ( CMet `  X
) )
361ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  F : NN0 --> ( ~P X  i^i  Fin ) )
377ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. n  e.  NN0  X  =  U_ y  e.  ( F `  n ) ( y B n ) )
38 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. x  e.  G  ( (
g `  x ) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  ( ( g `
 x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
) )
39 fveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
g `  x )  =  ( g `  t ) )
40 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( 2nd `  x )  =  ( 2nd `  t
) )
4140oveq1d 6300 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( 2nd `  x
)  +  1 )  =  ( ( 2nd `  t )  +  1 ) )
4239, 41breq12d 4460 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  <->  ( g `  t ) G ( ( 2nd `  t
)  +  1 ) ) )
43 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( B `  x )  =  ( B `  t ) )
4439, 41oveq12d 6303 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) )  =  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )
4543, 44ineq12d 3701 . . . . . . . . . . . . . . . . 17  |-  ( x  =  t  ->  (
( B `  x
)  i^i  ( (
g `  x ) B ( ( 2nd `  x )  +  1 ) ) )  =  ( ( B `  t )  i^i  (
( g `  t
) B ( ( 2nd `  t )  +  1 ) ) ) )
4645eleq1d 2536 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  (
( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K  <->  ( ( B `  t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4742, 46anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( x  =  t  ->  (
( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  <->  ( ( g `
 t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) ) )
4847cbvralv 3088 . . . . . . . . . . . . . 14  |-  ( A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K )  <->  A. t  e.  G  ( ( g `  t ) G ( ( 2nd `  t
)  +  1 )  /\  ( ( B `
 t )  i^i  ( ( g `  t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
4938, 48sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  A. t  e.  G  ( (
g `  t ) G ( ( 2nd `  t )  +  1 )  /\  ( ( B `  t )  i^i  ( ( g `
 t ) B ( ( 2nd `  t
)  +  1 ) ) )  e.  K
) )
50 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  x G 0 )
51 eqeq1 2471 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  =  0  <->  m  =  0 ) )
52 oveq1 6292 . . . . . . . . . . . . . . . 16  |-  ( g  =  m  ->  (
g  -  1 )  =  ( m  - 
1 ) )
5351, 52ifbieq2d 3964 . . . . . . . . . . . . . . 15  |-  ( g  =  m  ->  if ( g  =  0 ,  x ,  ( g  -  1 ) )  =  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
5453cbvmptv 4538 . . . . . . . . . . . . . 14  |-  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )
55 seqeq3 12081 . . . . . . . . . . . . . 14  |-  ( ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) )  =  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) )  ->  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) ) )
5654, 55ax-mp 5 . . . . . . . . . . . . 13  |-  seq 0
( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) )  =  seq 0 ( g ,  ( m  e.  NN0  |->  if ( m  =  0 ,  x ,  ( m  -  1 ) ) ) )
57 eqid 2467 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  <. (  seq 0 ( g ,  ( g  e.  NN0  |->  if ( g  =  0 ,  x ,  ( g  -  1 ) ) ) ) `  n ) ,  ( 3  /  ( 2 ^ n ) )
>. )  =  (
n  e.  NN  |->  <.
(  seq 0 ( g ,  ( g  e. 
NN0  |->  if ( g  =  0 ,  x ,  ( g  - 
1 ) ) ) ) `  n ) ,  ( 3  / 
( 2 ^ n
) ) >. )
58 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U  C_  J )
59 cmetmet 21552 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
60 metxmet 20664 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
6116mopnuni 20771 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
6232, 59, 60, 614syl 21 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  =  U. J
)
6362adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  X  =  U. J )
64 simprr 756 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. J  =  U. U )
6563, 64eqtr2d 2509 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U. U  =  X )
6665adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  U. U  =  X )
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 30145 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( x G 0  /\  A. x  e.  G  (
( g `  x
) G ( ( 2nd `  x )  +  1 )  /\  ( ( B `  x )  i^i  (
( g `  x
) B ( ( 2nd `  x )  +  1 ) ) )  e.  K ) ) )  ->  -.  X  e.  K )
6867expr 615 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( A. x  e.  G  ( ( g `  x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
6968exlimdv 1700 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  ( E. g A. x  e.  G  ( ( g `
 x ) G ( ( 2nd `  x
)  +  1 )  /\  ( ( B `
 x )  i^i  ( ( g `  x ) B ( ( 2nd `  x
)  +  1 ) ) )  e.  K
)  ->  -.  X  e.  K ) )
7034, 69mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  x G 0 )  ->  -.  X  e.  K )
7130, 70sylan2br 476 . . . . . . . 8  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  ( 0  e.  NN0  /\  x  e.  ( F `  0
)  /\  ( x B 0 )  e.  K ) )  ->  -.  X  e.  K
)
72713exp2 1214 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( 0  e. 
NN0  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) ) )
732, 72mpi 17 . . . . . 6  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( x  e.  ( F `  0
)  ->  ( (
x B 0 )  e.  K  ->  -.  X  e.  K )
) )
7473rexlimdv 2953 . . . . 5  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. x  e.  ( F `  0
) ( x B 0 )  e.  K  ->  -.  X  e.  K
) )
7526, 74syld 44 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  ->  -.  X  e.  K ) )
7675pm2.01d 169 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  -.  X  e.  K )
77 elfvdm 5892 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
78 sseq1 3525 . . . . . . . . 9  |-  ( u  =  X  ->  (
u  C_  U. v  <->  X 
C_  U. v ) )
7978rexbidv 2973 . . . . . . . 8  |-  ( u  =  X  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v ) )
8079notbid 294 . . . . . . 7  |-  ( u  =  X  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8180, 17elab2g 3252 . . . . . 6  |-  ( X  e.  dom  CMet  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8232, 77, 813syl 20 . . . . 5  |-  ( ph  ->  ( X  e.  K  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8382adantr 465 . . . 4  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( X  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
) )
8483con2bid 329 . . 3  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  -.  X  e.  K ) )
8576, 84mpbird 232 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v
)
8662ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  X  =  U. J )
8786sseq1d 3531 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  C_  U. v ) )
88 inss1 3718 . . . . . . . . 9  |-  ( ~P U  i^i  Fin )  C_ 
~P U
8988sseli 3500 . . . . . . . 8  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  e.  ~P U )
9089elpwid 4020 . . . . . . 7  |-  ( v  e.  ( ~P U  i^i  Fin )  ->  v  C_  U )
91 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  U  C_  J
)
92 sstr 3512 . . . . . . . 8  |-  ( ( v  C_  U  /\  U  C_  J )  -> 
v  C_  J )
9392unissd 4269 . . . . . . 7  |-  ( ( v  C_  U  /\  U  C_  J )  ->  U. v  C_  U. J
)
9490, 91, 93syl2anr 478 . . . . . 6  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  U. v  C_ 
U. J )
9594biantrud 507 . . . . 5  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) ) )
96 eqss 3519 . . . . 5  |-  ( U. J  =  U. v  <->  ( U. J  C_  U. v  /\  U. v  C_  U. J
) )
9795, 96syl6bbr 263 . . . 4  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( U. J  C_  U. v  <->  U. J  =  U. v
) )
9887, 97bitrd 253 . . 3  |-  ( ( ( ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  /\  v  e.  ( ~P U  i^i  Fin ) )  ->  ( X  C_  U. v  <->  U. J  = 
U. v ) )
9998rexbidva 2970 . 2  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  ( E. v  e.  ( ~P U  i^i  Fin ) X  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v ) )
10085, 99mpbid 210 1  |-  ( (
ph  /\  ( U  C_  J  /\  U. J  =  U. U ) )  ->  E. v  e.  ( ~P U  i^i  Fin ) U. J  =  U. v )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   ifcif 3939   ~Pcpw 4010   <.cop 4033   U.cuni 4245   U_ciun 4325   class class class wbr 4447   {copab 4504    |-> cmpt 4505   dom cdm 4999   -->wf 5584   ` cfv 5588  (class class class)co 6285    |-> cmpt2 6287   2ndc2nd 6784   Fincfn 7517   0cc0 9493   1c1 9494    + caddc 9496    - cmin 9806    / cdiv 10207   NNcn 10537   2c2 10586   3c3 10587   NN0cn0 10796    seqcseq 12076   ^cexp 12135   *Metcxmt 18214   Metcme 18215   ballcbl 18216   MetOpencmopn 18219   CMetcms 21520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-inf2 8059  ax-cc 8816  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-pm 7424  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-oi 7936  df-card 8321  df-acn 8324  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-q 11184  df-rp 11222  df-xneg 11319  df-xadd 11320  df-xmul 11321  df-ico 11536  df-icc 11537  df-fl 11898  df-seq 12077  df-exp 12136  df-rest 14681  df-topgen 14702  df-psmet 18222  df-xmet 18223  df-met 18224  df-bl 18225  df-mopn 18226  df-fbas 18227  df-fg 18228  df-top 19206  df-bases 19208  df-topon 19209  df-cld 19326  df-ntr 19327  df-cls 19328  df-nei 19405  df-lm 19536  df-haus 19622  df-fil 20174  df-fm 20266  df-flim 20267  df-flf 20268  df-cfil 21521  df-cau 21522  df-cmet 21523
This theorem is referenced by:  heibor  30147
  Copyright terms: Public domain W3C validator