Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem1 Structured version   Unicode version

Theorem heiborlem1 30512
Description: Lemma for heibor 30522. We work with a fixed open cover  U throughout. The set  K is the set of all subsets of  X that admit no finite subcover of  U. (We wish to prove that  K is empty.) If a set  C has no finite subcover, then any finite cover of  C must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
heibor.3  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
heiborlem1.4  |-  B  e. 
_V
Assertion
Ref Expression
heiborlem1  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B  /\  C  e.  K )  ->  E. x  e.  A  B  e.  K )
Distinct variable groups:    x, A    x, u, v, D    u, B, v    u, J, v, x    u, U, v, x    u, C, v   
x, K
Allowed substitution hints:    A( v, u)    B( x)    C( x)    K( v, u)

Proof of Theorem heiborlem1
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 heiborlem1.4 . . . . . . . 8  |-  B  e. 
_V
2 sseq1 3520 . . . . . . . . . 10  |-  ( u  =  B  ->  (
u  C_  U. v  <->  B 
C_  U. v ) )
32rexbidv 2968 . . . . . . . . 9  |-  ( u  =  B  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v ) )
43notbid 294 . . . . . . . 8  |-  ( u  =  B  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v
) )
5 heibor.3 . . . . . . . 8  |-  K  =  { u  |  -.  E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v }
61, 4, 5elab2 3249 . . . . . . 7  |-  ( B  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v
)
76con2bii 332 . . . . . 6  |-  ( E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v  <->  -.  B  e.  K )
87ralbii 2888 . . . . 5  |-  ( A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B 
C_  U. v  <->  A. x  e.  A  -.  B  e.  K )
9 ralnex 2903 . . . . 5  |-  ( A. x  e.  A  -.  B  e.  K  <->  -.  E. x  e.  A  B  e.  K )
108, 9bitr2i 250 . . . 4  |-  ( -. 
E. x  e.  A  B  e.  K  <->  A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v
)
11 unieq 4259 . . . . . . . . 9  |-  ( v  =  ( t `  x )  ->  U. v  =  U. ( t `  x ) )
1211sseq2d 3527 . . . . . . . 8  |-  ( v  =  ( t `  x )  ->  ( B  C_  U. v  <->  B  C_  U. (
t `  x )
) )
1312ac6sfi 7782 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B 
C_  U. v )  ->  E. t ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_ 
U. ( t `  x ) ) )
1413ex 434 . . . . . 6  |-  ( A  e.  Fin  ->  ( A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v  ->  E. t ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_ 
U. ( t `  x ) ) ) )
1514adantr 465 . . . . 5  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v  ->  E. t ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. ( t `
 x ) ) ) )
16 sseq1 3520 . . . . . . . . . . . 12  |-  ( u  =  C  ->  (
u  C_  U. v  <->  C 
C_  U. v ) )
1716rexbidv 2968 . . . . . . . . . . 11  |-  ( u  =  C  ->  ( E. v  e.  ( ~P U  i^i  Fin )
u  C_  U. v  <->  E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v ) )
1817notbid 294 . . . . . . . . . 10  |-  ( u  =  C  ->  ( -.  E. v  e.  ( ~P U  i^i  Fin ) u  C_  U. v  <->  -. 
E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v
) )
1918, 5elab2g 3248 . . . . . . . . 9  |-  ( C  e.  K  ->  ( C  e.  K  <->  -.  E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v
) )
2019ibi 241 . . . . . . . 8  |-  ( C  e.  K  ->  -.  E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v )
21 frn 5743 . . . . . . . . . . . . . . 15  |-  ( t : A --> ( ~P U  i^i  Fin )  ->  ran  t  C_  ( ~P U  i^i  Fin )
)
2221ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  ran  t  C_  ( ~P U  i^i  Fin ) )
23 inss1 3714 . . . . . . . . . . . . . 14  |-  ( ~P U  i^i  Fin )  C_ 
~P U
2422, 23syl6ss 3511 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  ran  t  C_  ~P U )
25 sspwuni 4421 . . . . . . . . . . . . 13  |-  ( ran  t  C_  ~P U  <->  U.
ran  t  C_  U
)
2624, 25sylib 196 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U. ran  t  C_  U )
27 vex 3112 . . . . . . . . . . . . . . 15  |-  t  e. 
_V
2827rnex 6733 . . . . . . . . . . . . . 14  |-  ran  t  e.  _V
2928uniex 6595 . . . . . . . . . . . . 13  |-  U. ran  t  e.  _V
3029elpw 4021 . . . . . . . . . . . 12  |-  ( U. ran  t  e.  ~P U 
<-> 
U. ran  t  C_  U )
3126, 30sylibr 212 . . . . . . . . . . 11  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U. ran  t  e.  ~P U
)
32 ffn 5737 . . . . . . . . . . . . . . 15  |-  ( t : A --> ( ~P U  i^i  Fin )  ->  t  Fn  A )
3332ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  t  Fn  A )
34 dffn4 5807 . . . . . . . . . . . . . 14  |-  ( t  Fn  A  <->  t : A -onto-> ran  t )
3533, 34sylib 196 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  t : A -onto-> ran  t )
36 fofi 7824 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  t : A -onto-> ran  t
)  ->  ran  t  e. 
Fin )
3735, 36syldan 470 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  ran  t  e.  Fin )
38 inss2 3715 . . . . . . . . . . . . 13  |-  ( ~P U  i^i  Fin )  C_ 
Fin
3922, 38syl6ss 3511 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  ran  t  C_  Fin )
40 unifi 7827 . . . . . . . . . . . 12  |-  ( ( ran  t  e.  Fin  /\ 
ran  t  C_  Fin )  ->  U. ran  t  e. 
Fin )
4137, 39, 40syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U. ran  t  e.  Fin )
4231, 41elind 3684 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U. ran  t  e.  ( ~P U  i^i  Fin ) )
4342adantlr 714 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U. ran  t  e.  ( ~P U  i^i  Fin ) )
44 simplr 755 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  C  C_ 
U_ x  e.  A  B )
45 fnfvelrn 6029 . . . . . . . . . . . . . . . . . 18  |-  ( ( t  Fn  A  /\  x  e.  A )  ->  ( t `  x
)  e.  ran  t
)
4632, 45sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( t : A --> ( ~P U  i^i  Fin )  /\  x  e.  A
)  ->  ( t `  x )  e.  ran  t )
4746adantll 713 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  Fin  /\  t : A --> ( ~P U  i^i  Fin )
)  /\  x  e.  A )  ->  (
t `  x )  e.  ran  t )
48 elssuni 4281 . . . . . . . . . . . . . . . 16  |-  ( ( t `  x )  e.  ran  t  -> 
( t `  x
)  C_  U. ran  t
)
49 uniss 4272 . . . . . . . . . . . . . . . 16  |-  ( ( t `  x ) 
C_  U. ran  t  ->  U. ( t `  x
)  C_  U. U. ran  t )
5047, 48, 493syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  t : A --> ( ~P U  i^i  Fin )
)  /\  x  e.  A )  ->  U. (
t `  x )  C_ 
U. U. ran  t )
51 sstr2 3506 . . . . . . . . . . . . . . 15  |-  ( B 
C_  U. ( t `  x )  ->  ( U. ( t `  x
)  C_  U. U. ran  t  ->  B  C_  U. U. ran  t ) )
5250, 51syl5com 30 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  t : A --> ( ~P U  i^i  Fin )
)  /\  x  e.  A )  ->  ( B  C_  U. ( t `
 x )  ->  B  C_  U. U. ran  t ) )
5352ralimdva 2865 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  t : A --> ( ~P U  i^i  Fin )
)  ->  ( A. x  e.  A  B  C_ 
U. ( t `  x )  ->  A. x  e.  A  B  C_  U. U. ran  t ) )
5453impr 619 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  A. x  e.  A  B  C_  U. U. ran  t )
55 iunss 4373 . . . . . . . . . . . 12  |-  ( U_ x  e.  A  B  C_ 
U. U. ran  t  <->  A. x  e.  A  B  C_  U. U. ran  t )
5654, 55sylibr 212 . . . . . . . . . . 11  |-  ( ( A  e.  Fin  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U_ x  e.  A  B  C_  U. U. ran  t )
5756adantlr 714 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  U_ x  e.  A  B  C_  U. U. ran  t )
5844, 57sstrd 3509 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  C  C_ 
U. U. ran  t )
59 unieq 4259 . . . . . . . . . . 11  |-  ( v  =  U. ran  t  ->  U. v  =  U. U.
ran  t )
6059sseq2d 3527 . . . . . . . . . 10  |-  ( v  =  U. ran  t  ->  ( C  C_  U. v  <->  C 
C_  U. U. ran  t
) )
6160rspcev 3210 . . . . . . . . 9  |-  ( ( U. ran  t  e.  ( ~P U  i^i  Fin )  /\  C  C_  U.
U. ran  t )  ->  E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v
)
6243, 58, 61syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  E. v  e.  ( ~P U  i^i  Fin ) C  C_  U. v
)
6320, 62nsyl3 119 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  /\  ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. (
t `  x )
) )  ->  -.  C  e.  K )
6463ex 434 . . . . . 6  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_ 
U. ( t `  x ) )  ->  -.  C  e.  K
) )
6564exlimdv 1725 . . . . 5  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( E. t ( t : A --> ( ~P U  i^i  Fin )  /\  A. x  e.  A  B  C_  U. ( t `
 x ) )  ->  -.  C  e.  K ) )
6615, 65syld 44 . . . 4  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( A. x  e.  A  E. v  e.  ( ~P U  i^i  Fin ) B  C_  U. v  ->  -.  C  e.  K
) )
6710, 66syl5bi 217 . . 3  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( -.  E. x  e.  A  B  e.  K  ->  -.  C  e.  K ) )
6867con4d 105 . 2  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B )  -> 
( C  e.  K  ->  E. x  e.  A  B  e.  K )
)
69683impia 1193 1  |-  ( ( A  e.  Fin  /\  C  C_  U_ x  e.  A  B  /\  C  e.  K )  ->  E. x  e.  A  B  e.  K )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   U_ciun 4332   ran crn 5009    Fn wfn 5589   -->wf 5590   -onto->wfo 5592   ` cfv 5594   Fincfn 7535   MetOpencmopn 18535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-fin 7539
This theorem is referenced by:  heiborlem3  30514  heiborlem10  30521
  Copyright terms: Public domain W3C validator