Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Unicode version

Theorem heibor1 26409
Description: One half of heibor 26420, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 19223 and total boundedness here, which follows trivially from the fact that the set of all  r-balls is an open cover of  X, so finitely many cover  X. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor1
Dummy variables  x  y  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 731 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  D  e.  ( Met `  X ) )
3 simplr 732 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  J  e.  Comp )
4 simprl 733 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  ( Cau `  D ) )
5 simprr 734 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x : NN --> X )
61, 2, 3, 4, 5heibor1lem 26408 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  dom  ( ~~> t `  J ) )
76expr 599 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  x  e.  ( Cau `  D ) )  ->  ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
87ralrimiva 2749 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
9 nnuz 10477 . . . 4  |-  NN  =  ( ZZ>= `  1 )
10 1z 10267 . . . . 5  |-  1  e.  ZZ
1110a1i 11 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  1  e.  ZZ )
12 simpl 444 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( Met `  X
) )
139, 1, 11, 12iscmet3 19199 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  <->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) ) )
148, 13mpbird 224 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( CMet `  X
) )
15 simplr 732 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  J  e.  Comp )
16 metxmet 18317 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
17 id 20 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  z  e.  X )
18 rpxr 10575 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  r  e. 
RR* )
191blopn 18483 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  z  e.  X  /\  r  e.  RR* )  ->  ( z ( ball `  D ) r )  e.  J )
2016, 17, 18, 19syl3an 1226 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  (
z ( ball `  D
) r )  e.  J )
21203com23 1159 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  (
z ( ball `  D
) r )  e.  J )
22213expa 1153 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  J
)
23 eleq1a 2473 . . . . . . . . . . 11  |-  ( ( z ( ball `  D
) r )  e.  J  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2422, 23syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2524rexlimdva 2790 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z
( ball `  D )
r )  ->  y  e.  J ) )
2625adantlr 696 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z ( ball `  D ) r )  ->  y  e.  J
) )
2726abssdv 3377 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  J )
2816ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  D  e.  ( * Met `  X
) )
291mopnuni 18424 . . . . . . . . . 10  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
3028, 29syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  =  U. J )
31 blcntr 18396 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D
) r ) )
3216, 31syl3an1 1217 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D ) r ) )
33323com23 1159 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  z  e.  ( z ( ball `  D ) r ) )
34333expa 1153 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  ( z ( ball `  D ) r ) )
35 ovex 6065 . . . . . . . . . . . . . . 15  |-  ( z ( ball `  D
) r )  e. 
_V
3635elabrex 5944 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  (
z ( ball `  D
) r )  e. 
{ y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3736adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
38 elunii 3980 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( z ( ball `  D
) r )  /\  ( z ( ball `  D ) r )  e.  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } )  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3934, 37, 38syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4039ralrimiva 2749 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4140adantlr 696 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
42 nfcv 2540 . . . . . . . . . . 11  |-  F/_ z X
43 nfre1 2722 . . . . . . . . . . . . 13  |-  F/ z E. z  e.  X  y  =  ( z
( ball `  D )
r )
4443nfab 2544 . . . . . . . . . . . 12  |-  F/_ z { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4544nfuni 3981 . . . . . . . . . . 11  |-  F/_ z U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4642, 45dfss3f 3300 . . . . . . . . . 10  |-  ( X 
C_  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4741, 46sylibr 204 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4830, 47eqsstr3d 3343 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4927unissd 3999 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  U. J )
5048, 49eqssd 3325 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  =  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
51 eqid 2404 . . . . . . . 8  |-  U. J  =  U. J
5251cmpcov 17406 . . . . . . 7  |-  ( ( J  e.  Comp  /\  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  C_  J  /\  U. J  =  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  i^i  Fin ) U. J  =  U. x
)
5315, 27, 50, 52syl3anc 1184 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x )
54 elin 3490 . . . . . . . . . 10  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin ) )
55 ancom 438 . . . . . . . . . 10  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin )  <->  ( x  e.  Fin  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) )
5654, 55bitri 241 . . . . . . . . 9  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) )
5756anbi1i 677 . . . . . . . 8  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( (
x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )  /\  U. J  =  U. x ) )
58 anass 631 . . . . . . . 8  |-  ( ( ( x  e.  Fin  /\  x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  /\  U. J  =  U. x
)  <->  ( x  e. 
Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) ) )
5957, 58bitri 241 . . . . . . 7  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( x  e.  Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x ) ) )
6059rexbii2 2695 . . . . . 6  |-  ( E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x  <->  E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) )
6153, 60sylib 189 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  /\  U. J  =  U. x
) )
62 ancom 438 . . . . . . . 8  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  U. J  =  U. x )  <->  ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } ) )
63 eqcom 2406 . . . . . . . . . 10  |-  ( U. x  =  X  <->  X  =  U. x )
6430eqeq1d 2412 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( X  = 
U. x  <->  U. J  = 
U. x ) )
6563, 64syl5rbb 250 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( U. J  =  U. x  <->  U. x  =  X ) )
6665anbi1d 686 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  <-> 
( U. x  =  X  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) ) )
6762, 66syl5bb 249 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  <->  ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) ) )
68 elpwi 3767 . . . . . . . . 9  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  x  C_  { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
69 ssabral 3374 . . . . . . . . 9  |-  ( x 
C_  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) )
7068, 69sylib 189 . . . . . . . 8  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  A. y  e.  x  E. z  e.  X  y  =  ( z
( ball `  D )
r ) )
7170anim2i 553 . . . . . . 7  |-  ( ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  ->  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
7267, 71syl6bi 220 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  -> 
( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7372reximdv 2777 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
)  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7461, 73mpd 15 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D
) r ) ) )
7574ralrimiva 2749 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
76 istotbnd 26368 . . 3  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7712, 75, 76sylanbrc 646 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( TotBnd `  X )
)
7814, 77jca 519 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   1c1 8947   RR*cxr 9075   NNcn 9956   ZZcz 10238   RR+crp 10568   * Metcxmt 16641   Metcme 16642   ballcbl 16643   MetOpencmopn 16646   ~~> tclm 17244   Compccmp 17403   Caucca 19159   CMetcms 19160   TotBndctotbnd 26365
This theorem is referenced by:  heibor  26420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cc 8271  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ico 10878  df-fz 11000  df-fl 11157  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-rest 13605  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-top 16918  df-bases 16920  df-topon 16921  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lm 17247  df-cmp 17404  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-cfil 19161  df-cau 19162  df-cmet 19163  df-totbnd 26367
  Copyright terms: Public domain W3C validator