Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Unicode version

Theorem heibor1 30511
Description: One half of heibor 30522, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 21882 and total boundedness here, which follows trivially from the fact that the set of all  r-balls is an open cover of  X, so finitely many cover  X. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor1
Dummy variables  x  y  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 753 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  D  e.  ( Met `  X ) )
3 simplr 755 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  J  e.  Comp )
4 simprl 756 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  ( Cau `  D ) )
5 simprr 757 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x : NN --> X )
61, 2, 3, 4, 5heibor1lem 30510 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  dom  ( ~~> t `  J ) )
76expr 615 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  x  e.  ( Cau `  D ) )  ->  ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
87ralrimiva 2871 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
9 nnuz 11141 . . . 4  |-  NN  =  ( ZZ>= `  1 )
10 1zzd 10916 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  1  e.  ZZ )
11 simpl 457 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( Met `  X
) )
129, 1, 10, 11iscmet3 21858 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  <->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) ) )
138, 12mpbird 232 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( CMet `  X
) )
14 simplr 755 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  J  e.  Comp )
15 metxmet 20963 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
16 id 22 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  z  e.  X )
17 rpxr 11252 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  r  e. 
RR* )
181blopn 21129 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  r  e.  RR* )  ->  ( z ( ball `  D ) r )  e.  J )
1915, 16, 17, 18syl3an 1270 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  (
z ( ball `  D
) r )  e.  J )
20193com23 1202 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  (
z ( ball `  D
) r )  e.  J )
21203expa 1196 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  J
)
22 eleq1a 2540 . . . . . . . . . . 11  |-  ( ( z ( ball `  D
) r )  e.  J  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2321, 22syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2423rexlimdva 2949 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z
( ball `  D )
r )  ->  y  e.  J ) )
2524adantlr 714 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z ( ball `  D ) r )  ->  y  e.  J
) )
2625abssdv 3570 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  J )
2715ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
281mopnuni 21070 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  =  U. J )
30 blcntr 21042 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D
) r ) )
3115, 30syl3an1 1261 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D ) r ) )
32313com23 1202 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  z  e.  ( z ( ball `  D ) r ) )
33323expa 1196 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  ( z ( ball `  D ) r ) )
34 ovex 6324 . . . . . . . . . . . . . . 15  |-  ( z ( ball `  D
) r )  e. 
_V
3534elabrex 6156 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  (
z ( ball `  D
) r )  e. 
{ y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3635adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
37 elunii 4256 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( z ( ball `  D
) r )  /\  ( z ( ball `  D ) r )  e.  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } )  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3833, 36, 37syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3938ralrimiva 2871 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4039adantlr 714 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
41 nfcv 2619 . . . . . . . . . . 11  |-  F/_ z X
42 nfre1 2918 . . . . . . . . . . . . 13  |-  F/ z E. z  e.  X  y  =  ( z
( ball `  D )
r )
4342nfab 2623 . . . . . . . . . . . 12  |-  F/_ z { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4443nfuni 4257 . . . . . . . . . . 11  |-  F/_ z U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4541, 44dfss3f 3491 . . . . . . . . . 10  |-  ( X 
C_  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4640, 45sylibr 212 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4729, 46eqsstr3d 3534 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4826unissd 4275 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  U. J )
4947, 48eqssd 3516 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  =  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
50 eqid 2457 . . . . . . . 8  |-  U. J  =  U. J
5150cmpcov 20016 . . . . . . 7  |-  ( ( J  e.  Comp  /\  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  C_  J  /\  U. J  =  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  i^i  Fin ) U. J  =  U. x
)
5214, 26, 49, 51syl3anc 1228 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x )
53 elin 3683 . . . . . . . . . 10  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin ) )
54 ancom 450 . . . . . . . . . 10  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin )  <->  ( x  e.  Fin  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) )
5553, 54bitri 249 . . . . . . . . 9  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) )
5655anbi1i 695 . . . . . . . 8  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( (
x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )  /\  U. J  =  U. x ) )
57 anass 649 . . . . . . . 8  |-  ( ( ( x  e.  Fin  /\  x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  /\  U. J  =  U. x
)  <->  ( x  e. 
Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) ) )
5856, 57bitri 249 . . . . . . 7  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( x  e.  Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x ) ) )
5958rexbii2 2957 . . . . . 6  |-  ( E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x  <->  E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) )
6052, 59sylib 196 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  /\  U. J  =  U. x
) )
61 ancom 450 . . . . . . . 8  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  U. J  =  U. x )  <->  ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } ) )
62 eqcom 2466 . . . . . . . . . 10  |-  ( U. x  =  X  <->  X  =  U. x )
6329eqeq1d 2459 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( X  = 
U. x  <->  U. J  = 
U. x ) )
6462, 63syl5rbb 258 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( U. J  =  U. x  <->  U. x  =  X ) )
6564anbi1d 704 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  <-> 
( U. x  =  X  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) ) )
6661, 65syl5bb 257 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  <->  ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) ) )
67 elpwi 4024 . . . . . . . . 9  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  x  C_  { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
68 ssabral 3567 . . . . . . . . 9  |-  ( x 
C_  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) )
6967, 68sylib 196 . . . . . . . 8  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  A. y  e.  x  E. z  e.  X  y  =  ( z
( ball `  D )
r ) )
7069anim2i 569 . . . . . . 7  |-  ( ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  ->  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
7166, 70syl6bi 228 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  -> 
( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7271reximdv 2931 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
)  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7360, 72mpd 15 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D
) r ) ) )
7473ralrimiva 2871 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
75 istotbnd 30470 . . 3  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7611, 74, 75sylanbrc 664 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( TotBnd `  X )
)
7713, 76jca 532 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   {cab 2442   A.wral 2807   E.wrex 2808    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   dom cdm 5008   -->wf 5590   ` cfv 5594  (class class class)co 6296   Fincfn 7535   1c1 9510   RR*cxr 9644   NNcn 10556   RR+crp 11245   *Metcxmt 18530   Metcme 18531   ballcbl 18532   MetOpencmopn 18535   ~~> tclm 19854   Compccmp 20013   Caucca 21818   CMetcms 21819   TotBndctotbnd 30467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ico 11560  df-fz 11698  df-fl 11932  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-rest 14840  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-top 19526  df-bases 19528  df-topon 19529  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lm 19857  df-cmp 20014  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-cfil 21820  df-cau 21821  df-cmet 21822  df-totbnd 30469
This theorem is referenced by:  heibor  30522
  Copyright terms: Public domain W3C validator