Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor1 Structured version   Unicode version

Theorem heibor1 30274
Description: One half of heibor 30285, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 21622 and total boundedness here, which follows trivially from the fact that the set of all  r-balls is an open cover of  X, so finitely many cover  X. (Contributed by Jeff Madsen, 16-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor1
Dummy variables  x  y  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
2 simpll 753 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  D  e.  ( Met `  X ) )
3 simplr 754 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  J  e.  Comp )
4 simprl 755 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  ( Cau `  D ) )
5 simprr 756 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x : NN --> X )
61, 2, 3, 4, 5heibor1lem 30273 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  ( x  e.  ( Cau `  D
)  /\  x : NN
--> X ) )  ->  x  e.  dom  ( ~~> t `  J ) )
76expr 615 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  x  e.  ( Cau `  D ) )  ->  ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
87ralrimiva 2855 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) )
9 nnuz 11120 . . . 4  |-  NN  =  ( ZZ>= `  1 )
10 1zzd 10896 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  1  e.  ZZ )
11 simpl 457 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( Met `  X
) )
129, 1, 10, 11iscmet3 21598 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  <->  A. x  e.  ( Cau `  D
) ( x : NN --> X  ->  x  e.  dom  ( ~~> t `  J ) ) ) )
138, 12mpbird 232 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( CMet `  X
) )
14 simplr 754 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  J  e.  Comp )
15 metxmet 20703 . . . . . . . . . . . . . 14  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
16 id 22 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  z  e.  X )
17 rpxr 11231 . . . . . . . . . . . . . 14  |-  ( r  e.  RR+  ->  r  e. 
RR* )
181blopn 20869 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  r  e.  RR* )  ->  ( z ( ball `  D ) r )  e.  J )
1915, 16, 17, 18syl3an 1269 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  (
z ( ball `  D
) r )  e.  J )
20193com23 1201 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  (
z ( ball `  D
) r )  e.  J )
21203expa 1195 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  J
)
22 eleq1a 2524 . . . . . . . . . . 11  |-  ( ( z ( ball `  D
) r )  e.  J  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2321, 22syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( y  =  ( z (
ball `  D )
r )  ->  y  e.  J ) )
2423rexlimdva 2933 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z
( ball `  D )
r )  ->  y  e.  J ) )
2524adantlr 714 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. z  e.  X  y  =  ( z ( ball `  D ) r )  ->  y  e.  J
) )
2625abssdv 3556 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  J )
2715ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
281mopnuni 20810 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  =  U. J )
30 blcntr 20782 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D
) r ) )
3115, 30syl3an1 1260 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  z  e.  X  /\  r  e.  RR+ )  ->  z  e.  ( z ( ball `  D ) r ) )
32313com23 1201 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+  /\  z  e.  X )  ->  z  e.  ( z ( ball `  D ) r ) )
33323expa 1195 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  ( z ( ball `  D ) r ) )
34 ovex 6305 . . . . . . . . . . . . . . 15  |-  ( z ( ball `  D
) r )  e. 
_V
3534elabrex 6136 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  (
z ( ball `  D
) r )  e. 
{ y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3635adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  ( z
( ball `  D )
r )  e.  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
37 elunii 4235 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( z ( ball `  D
) r )  /\  ( z ( ball `  D ) r )  e.  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } )  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3833, 36, 37syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  /\  z  e.  X
)  ->  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
3938ralrimiva 2855 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4039adantlr 714 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
41 nfcv 2603 . . . . . . . . . . 11  |-  F/_ z X
42 nfre1 2902 . . . . . . . . . . . . 13  |-  F/ z E. z  e.  X  y  =  ( z
( ball `  D )
r )
4342nfab 2607 . . . . . . . . . . . 12  |-  F/_ z { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4443nfuni 4236 . . . . . . . . . . 11  |-  F/_ z U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }
4541, 44dfss3f 3478 . . . . . . . . . 10  |-  ( X 
C_  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. z  e.  X  z  e.  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
4640, 45sylibr 212 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  X  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4729, 46eqsstr3d 3521 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  C_  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )
4826unissd 4254 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  C_  U. J )
4947, 48eqssd 3503 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  U. J  =  U. { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )
50 eqid 2441 . . . . . . . 8  |-  U. J  =  U. J
5150cmpcov 19755 . . . . . . 7  |-  ( ( J  e.  Comp  /\  {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  C_  J  /\  U. J  =  U. {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  i^i  Fin ) U. J  =  U. x
)
5214, 26, 49, 51syl3anc 1227 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x )
53 elin 3669 . . . . . . . . . 10  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin ) )
54 ancom 450 . . . . . . . . . 10  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  x  e. 
Fin )  <->  ( x  e.  Fin  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) )
5553, 54bitri 249 . . . . . . . . 9  |-  ( x  e.  ( ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  i^i  Fin )  <->  ( x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) )
5655anbi1i 695 . . . . . . . 8  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( (
x  e.  Fin  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )  /\  U. J  =  U. x ) )
57 anass 649 . . . . . . . 8  |-  ( ( ( x  e.  Fin  /\  x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) } )  /\  U. J  =  U. x
)  <->  ( x  e. 
Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) ) )
5856, 57bitri 249 . . . . . . 7  |-  ( ( x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin )  /\  U. J  =  U. x )  <->  ( x  e.  Fin  /\  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x ) ) )
5958rexbii2 2941 . . . . . 6  |-  ( E. x  e.  ( ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  i^i  Fin ) U. J  = 
U. x  <->  E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
) )
6052, 59sylib 196 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) }  /\  U. J  =  U. x
) )
61 ancom 450 . . . . . . . 8  |-  ( ( x  e.  ~P {
y  |  E. z  e.  X  y  =  ( z ( ball `  D ) r ) }  /\  U. J  =  U. x )  <->  ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } ) )
62 eqcom 2450 . . . . . . . . . 10  |-  ( U. x  =  X  <->  X  =  U. x )
6329eqeq1d 2443 . . . . . . . . . 10  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( X  = 
U. x  <->  U. J  = 
U. x ) )
6462, 63syl5rbb 258 . . . . . . . . 9  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( U. J  =  U. x  <->  U. x  =  X ) )
6564anbi1d 704 . . . . . . . 8  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( U. J  =  U. x  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  <-> 
( U. x  =  X  /\  x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) } ) ) )
6661, 65syl5bb 257 . . . . . . 7  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  <->  ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } ) ) )
67 elpwi 4002 . . . . . . . . 9  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  x  C_  { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) } )
68 ssabral 3553 . . . . . . . . 9  |-  ( x 
C_  { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  <->  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) )
6967, 68sylib 196 . . . . . . . 8  |-  ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  ->  A. y  e.  x  E. z  e.  X  y  =  ( z
( ball `  D )
r ) )
7069anim2i 569 . . . . . . 7  |-  ( ( U. x  =  X  /\  x  e.  ~P { y  |  E. z  e.  X  y  =  ( z (
ball `  D )
r ) } )  ->  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
7166, 70syl6bi 228 . . . . . 6  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( ( x  e.  ~P { y  |  E. z  e.  X  y  =  ( z ( ball `  D
) r ) }  /\  U. J  = 
U. x )  -> 
( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7271reximdv 2915 . . . . 5  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  ( E. x  e.  Fin  ( x  e. 
~P { y  |  E. z  e.  X  y  =  ( z
( ball `  D )
r ) }  /\  U. J  =  U. x
)  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7360, 72mpd 15 . . . 4  |-  ( ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  /\  r  e.  RR+ )  ->  E. x  e.  Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D
) r ) ) )
7473ralrimiva 2855 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) )
75 istotbnd 30233 . . 3  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. x  e. 
Fin  ( U. x  =  X  /\  A. y  e.  x  E. z  e.  X  y  =  ( z ( ball `  D ) r ) ) ) )
7611, 74, 75sylanbrc 664 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  D  e.  ( TotBnd `  X )
)
7713, 76jca 532 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   {cab 2426   A.wral 2791   E.wrex 2792    i^i cin 3457    C_ wss 3458   ~Pcpw 3993   U.cuni 4230   dom cdm 4985   -->wf 5570   ` cfv 5574  (class class class)co 6277   Fincfn 7514   1c1 9491   RR*cxr 9625   NNcn 10537   RR+crp 11224   *Metcxmt 18271   Metcme 18272   ballcbl 18273   MetOpencmopn 18276   ~~> tclm 19593   Compccmp 19752   Caucca 21558   CMetcms 21559   TotBndctotbnd 30230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cc 8813  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-omul 7133  df-er 7309  df-map 7420  df-pm 7421  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-acn 8321  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ico 11539  df-fz 11677  df-fl 11903  df-seq 12082  df-exp 12141  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-rlim 13286  df-rest 14692  df-topgen 14713  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-top 19266  df-bases 19268  df-topon 19269  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lm 19596  df-cmp 19753  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-cfil 21560  df-cau 21561  df-cmet 21562  df-totbnd 30232
This theorem is referenced by:  heibor  30285
  Copyright terms: Public domain W3C validator