Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heibor Structured version   Unicode version

Theorem heibor 28566
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 28555 and heiborlem1 28556 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
Hypothesis
Ref Expression
heibor.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
heibor  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )

Proof of Theorem heibor
Dummy variables  t  n  y  k  r  u  m  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.1 . . 3  |-  J  =  ( MetOpen `  D )
21heibor1 28555 . 2  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  ->  ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
) )
3 cmetmet 20641 . . . 4  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
43adantr 462 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  D  e.  ( Met `  X ) )
5 metxmet 19753 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
61mopntop 19859 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
73, 5, 63syl 20 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  J  e.  Top )
87adantr 462 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Top )
9 istotbnd 28514 . . . . . . . . . . . . 13  |-  ( D  e.  ( TotBnd `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) ) )
109simprbi 461 . . . . . . . . . . . 12  |-  ( D  e.  ( TotBnd `  X
)  ->  A. r  e.  RR+  E. u  e. 
Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) ) )
11 2nn 10469 . . . . . . . . . . . . . . 15  |-  2  e.  NN
12 nnexpcl 11864 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
1311, 12mpan 665 . . . . . . . . . . . . . 14  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  NN )
1413nnrpd 11016 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  ->  ( 2 ^ n )  e.  RR+ )
1514rpreccld 11027 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  ( 1  /  ( 2 ^ n ) )  e.  RR+ )
16 oveq2 6090 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
y ( ball `  D
) r )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
1716eqeq2d 2446 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
v  =  ( y ( ball `  D
) r )  <->  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1817rexbidv 2728 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
1918ralbidv 2727 . . . . . . . . . . . . . . 15  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r )  <->  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2019anbi2d 698 . . . . . . . . . . . . . 14  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  (
( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) r ) )  <->  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2120rexbidv 2728 . . . . . . . . . . . . 13  |-  ( r  =  ( 1  / 
( 2 ^ n
) )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) r ) )  <->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
2221rspccva 3063 . . . . . . . . . . . 12  |-  ( ( A. r  e.  RR+  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y
( ball `  D )
r ) )  /\  ( 1  /  (
2 ^ n ) )  e.  RR+ )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
2310, 15, 22syl2an 474 . . . . . . . . . . 11  |-  ( ( D  e.  ( TotBnd `  X )  /\  n  e.  NN0 )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2423expcom 435 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( D  e.  ( TotBnd `  X
)  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
2524adantl 463 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) ) )
26 oveq1 6089 . . . . . . . . . . . . . . 15  |-  ( y  =  ( m `  v )  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
2726eqeq2d 2446 . . . . . . . . . . . . . 14  |-  ( y  =  ( m `  v )  ->  (
v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
2827ac6sfi 7546 . . . . . . . . . . . . 13  |-  ( ( u  e.  Fin  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )
2928adantrl 710 . . . . . . . . . . . 12  |-  ( ( u  e.  Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
3029adantl 463 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. m
( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
31 simp3l 1011 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  m : u --> X )
32 frn 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( m : u --> X  ->  ran  m  C_  X )
3331, 32syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  X
)
341mopnuni 19860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
353, 5, 343syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( D  e.  ( CMet `  X
)  ->  X  =  U. J )
3635adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  X  =  U. J )
37363ad2ant1 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U. J )
3833, 37sseqtrd 3382 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  C_  U. J
)
39 fvex 5691 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  D )  e.  _V
401, 39eqeltri 2505 . . . . . . . . . . . . . . . . . . 19  |-  J  e. 
_V
4140uniex 6367 . . . . . . . . . . . . . . . . . 18  |-  U. J  e.  _V
4241elpw2 4446 . . . . . . . . . . . . . . . . 17  |-  ( ran  m  e.  ~P U. J 
<->  ran  m  C_  U. J
)
4338, 42sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ~P U. J )
44 simp2l 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  u  e.  Fin )
45 ffn 5549 . . . . . . . . . . . . . . . . . . 19  |-  ( m : u --> X  ->  m  Fn  u )
46 dffn4 5616 . . . . . . . . . . . . . . . . . . 19  |-  ( m  Fn  u  <->  m :
u -onto-> ran  m )
4745, 46sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( m : u --> X  ->  m : u -onto-> ran  m
)
48 fofi 7587 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  Fin  /\  m : u -onto-> ran  m
)  ->  ran  m  e. 
Fin )
4947, 48sylan2 471 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  Fin  /\  m : u --> X )  ->  ran  m  e.  Fin )
5044, 31, 49syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  Fin )
5143, 50elind 3530 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  ran  m  e.  ( ~P U. J  i^i  Fin ) )
5226eleq2d 2502 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( m `  v )  ->  (
r  e.  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
5352rexrn 5835 . . . . . . . . . . . . . . . . . . 19  |-  ( m  Fn  u  ->  ( E. y  e.  ran  m  r  e.  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
54 eliun 4165 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  E. y  e.  ran  m  r  e.  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
55 eliun 4165 . . . . . . . . . . . . . . . . . . 19  |-  ( r  e.  U_ v  e.  u  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  E. v  e.  u  r  e.  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5653, 54, 553bitr4g 288 . . . . . . . . . . . . . . . . . 18  |-  ( m  Fn  u  ->  (
r  e.  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  r  e.  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
5756eqrdv 2433 . . . . . . . . . . . . . . . . 17  |-  ( m  Fn  u  ->  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  = 
U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
5831, 45, 573syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
59 simp3r 1012 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  A. v  e.  u  v  =  ( (
m `  v )
( ball `  D )
( 1  /  (
2 ^ n ) ) ) )
60 uniiun 4213 . . . . . . . . . . . . . . . . . 18  |-  U. u  =  U_ v  e.  u  v
61 iuneq2 4177 . . . . . . . . . . . . . . . . . 18  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U_ v  e.  u  v  =  U_ v  e.  u  ( ( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6260, 61syl5eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  U. u  =  U_ v  e.  u  ( ( m `  v ) ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
6359, 62syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  U_ v  e.  u  (
( m `  v
) ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
64 simp2r 1010 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  U. u  =  X )
6558, 63, 643eqtr2rd 2474 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  X  =  U_ y  e.  ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
66 iuneq1 4174 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ran  m  ->  U_ y  e.  t 
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  =  U_ y  e. 
ran  m ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6766eqeq2d 2446 . . . . . . . . . . . . . . . 16  |-  ( t  =  ran  m  -> 
( X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  <->  X  =  U_ y  e.  ran  m
( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
6867rspcev 3064 . . . . . . . . . . . . . . 15  |-  ( ( ran  m  e.  ( ~P U. J  i^i  Fin )  /\  X  = 
U_ y  e.  ran  m ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
6951, 65, 68syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X )  /\  (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
70693expia 1184 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  U. u  =  X ) )  -> 
( ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7170adantrrr 719 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( (
m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7271exlimdv 1691 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  ( E. m ( m : u --> X  /\  A. v  e.  u  v  =  ( ( m `
 v ) (
ball `  D )
( 1  /  (
2 ^ n ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7330, 72mpd 15 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  n  e.  NN0 )  /\  ( u  e. 
Fin  /\  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) ) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
7473rexlimdvaa 2834 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( E. u  e.  Fin  ( U. u  =  X  /\  A. v  e.  u  E. y  e.  X  v  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7525, 74syld 44 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  n  e.  NN0 )  ->  ( D  e.  ( TotBnd `  X )  ->  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) ) )
7675ralrimdva 2798 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. n  e.  NN0  E. t  e.  ( ~P
U. J  i^i  Fin ) X  =  U_ y  e.  t  (
y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
7741pwex 4465 . . . . . . . . 9  |-  ~P U. J  e.  _V
7877inex1 4423 . . . . . . . 8  |-  ( ~P
U. J  i^i  Fin )  e.  _V
79 nn0ennn 11787 . . . . . . . . 9  |-  NN0  ~~  NN
80 nnenom 11788 . . . . . . . . 9  |-  NN  ~~  om
8179, 80entri 7353 . . . . . . . 8  |-  NN0  ~~  om
82 iuneq1 4174 . . . . . . . . 9  |-  ( t  =  ( m `  n )  ->  U_ y  e.  t  ( y
( ball `  D )
( 1  /  (
2 ^ n ) ) )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
8382eqeq2d 2446 . . . . . . . 8  |-  ( t  =  ( m `  n )  ->  ( X  =  U_ y  e.  t  ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8478, 81, 83axcc4 8598 . . . . . . 7  |-  ( A. n  e.  NN0  E. t  e.  ( ~P U. J  i^i  Fin ) X  = 
U_ y  e.  t  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
8576, 84syl6 33 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  E. m ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) ) )
86 elpwi 3859 . . . . . . . . . 10  |-  ( r  e.  ~P J  -> 
r  C_  J )
87 eqid 2435 . . . . . . . . . . . 12  |-  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v }  =  {
u  |  -.  E. v  e.  ( ~P r  i^i  Fin ) u 
C_  U. v }
88 eqid 2435 . . . . . . . . . . . 12  |-  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }  =  { <. t ,  k >.  |  ( k  e.  NN0  /\  t  e.  ( m `  k )  /\  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k )  e.  { u  |  -.  E. v  e.  ( ~P r  i^i 
Fin ) u  C_  U. v } ) }
89 eqid 2435 . . . . . . . . . . . 12  |-  ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) )  =  ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
90 simpl 454 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  D  e.  ( CMet `  X )
)
9135pweqd 3855 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( CMet `  X
)  ->  ~P X  =  ~P U. J )
9291ineq1d 3541 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P X  i^i  Fin )  =  ( ~P U. J  i^i  Fin ) )
93 feq3 5534 . . . . . . . . . . . . . . 15  |-  ( ( ~P X  i^i  Fin )  =  ( ~P U. J  i^i  Fin )  ->  ( m : NN0 --> ( ~P X  i^i  Fin ) 
<->  m : NN0 --> ( ~P
U. J  i^i  Fin ) ) )
9492, 93syl 16 . . . . . . . . . . . . . 14  |-  ( D  e.  ( CMet `  X
)  ->  ( m : NN0 --> ( ~P X  i^i  Fin )  <->  m : NN0
--> ( ~P U. J  i^i  Fin ) ) )
9594biimpar 482 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ( ~P X  i^i  Fin ) )
9695adantrr 711 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  m : NN0
--> ( ~P X  i^i  Fin ) )
97 oveq1 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  y  ->  (
t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
9897cbviunv 4199 . . . . . . . . . . . . . . . . . 18  |-  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n )
99 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m : NN0 --> ( ~P
U. J  i^i  Fin )  ->  m : NN0 --> ( ~P U. J  i^i  Fin ) )
100 inss1 3560 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ~P
U. J  i^i  Fin )  C_  ~P U. J
101100, 91syl5sseqr 3395 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( D  e.  ( CMet `  X
)  ->  ( ~P U. J  i^i  Fin )  C_ 
~P X )
102 fss 5557 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  ( ~P U. J  i^i  Fin )  C_  ~P X )  ->  m : NN0 --> ~P X )
10399, 101, 102syl2anr 475 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  m : NN0 --> ~P X )
104103ffvelrnda 5833 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  e.  ~P X )
105104elpwid 3860 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  (
m `  n )  C_  X )
106105sselda 3346 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
y  e.  X )
107 simplr 749 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  ->  n  e.  NN0 )
108 oveq1 6089 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) )
109 oveq2 6090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  =  n  ->  (
2 ^ m )  =  ( 2 ^ n ) )
110109oveq2d 6098 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  n  ->  (
1  /  ( 2 ^ m ) )  =  ( 1  / 
( 2 ^ n
) ) )
111110oveq2d 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  n  ->  (
y ( ball `  D
) ( 1  / 
( 2 ^ m
) ) )  =  ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )
112 ovex 6107 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  e. 
_V
113108, 111, 89, 112ovmpt2 6217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  X  /\  n  e.  NN0 )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
114106, 107, 113syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  ( CMet `  X
)  /\  m : NN0
--> ( ~P U. J  i^i  Fin ) )  /\  n  e.  NN0 )  /\  y  e.  ( m `  n ) )  -> 
( y ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
115114iuneq2dv 4182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ y  e.  ( m `  n
) ( y ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
11698, 115syl5eq 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )
117116eqeq2d 2446 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ y  e.  ( m `
 n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )
118117biimprd 223 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (
CMet `  X )  /\  m : NN0 --> ( ~P
U. J  i^i  Fin ) )  /\  n  e.  NN0 )  ->  ( X  =  U_ y  e.  ( m `  n
) ( y (
ball `  D )
( 1  /  (
2 ^ n ) ) )  ->  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n ) ) )
119118ralimdva 2786 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( CMet `  X )  /\  m : NN0 --> ( ~P U. J  i^i  Fin ) )  ->  ( A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n ) ) )
120119impr 616 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. n  e.  NN0  X  =  U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
121 fveq2 5681 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
m `  n )  =  ( m `  k ) )
122121iuneq1d 4185 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) n ) )
123 simpl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  ->  n  =  k )
124123oveq2d 6098 . . . . . . . . . . . . . . . . 17  |-  ( ( n  =  k  /\  t  e.  ( m `  k ) )  -> 
( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  =  ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
125124iuneq2dv 4182 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
126122, 125eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
127126eqeq2d 2446 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( X  =  U_ t  e.  ( m `  n
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) n )  <->  X  =  U_ t  e.  ( m `
 k ) ( t ( z  e.  X ,  m  e. 
NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) k ) ) )
128127cbvralv 2939 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN0  X  = 
U_ t  e.  ( m `  n ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z (
ball `  D )
( 1  /  (
2 ^ m ) ) ) ) n )  <->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k
) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D
) ( 1  / 
( 2 ^ m
) ) ) ) k ) )
129120, 128sylib 196 . . . . . . . . . . . 12  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. k  e.  NN0  X  =  U_ t  e.  ( m `  k ) ( t ( z  e.  X ,  m  e.  NN0  |->  ( z ( ball `  D ) ( 1  /  ( 2 ^ m ) ) ) ) k ) )
1301, 87, 88, 89, 90, 96, 129heiborlem10 28565 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  /\  ( r 
C_  J  /\  U. J  =  U. r
) )  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v )
131130exp32 602 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  C_  J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
13286, 131syl5 32 . . . . . . . . 9  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  ( r  e.  ~P J  ->  ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
133132ralrimiv 2790 . . . . . . . 8  |-  ( ( D  e.  ( CMet `  X )  /\  (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
134133ex 434 . . . . . . 7  |-  ( D  e.  ( CMet `  X
)  ->  ( (
m : NN0 --> ( ~P
U. J  i^i  Fin )  /\  A. n  e. 
NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D
) ( 1  / 
( 2 ^ n
) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
135134exlimdv 1691 . . . . . 6  |-  ( D  e.  ( CMet `  X
)  ->  ( E. m ( m : NN0 --> ( ~P U. J  i^i  Fin )  /\  A. n  e.  NN0  X  =  U_ y  e.  ( m `  n ) ( y ( ball `  D ) ( 1  /  ( 2 ^ n ) ) ) )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
13685, 135syld 44 . . . . 5  |-  ( D  e.  ( CMet `  X
)  ->  ( D  e.  ( TotBnd `  X )  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i 
Fin ) U. J  =  U. v ) ) )
137136imp 429 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) )
138 eqid 2435 . . . . 5  |-  U. J  =  U. J
139138iscmp 18835 . . . 4  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. r  e.  ~P  J ( U. J  =  U. r  ->  E. v  e.  ( ~P r  i^i  Fin ) U. J  =  U. v ) ) )
1408, 137, 139sylanbrc 659 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  J  e.  Comp )
1414, 140jca 529 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  D  e.  ( TotBnd `  X )
)  ->  ( D  e.  ( Met `  X
)  /\  J  e.  Comp ) )
1422, 141impbii 188 1  |-  ( ( D  e.  ( Met `  X )  /\  J  e.  Comp )  <->  ( D  e.  ( CMet `  X
)  /\  D  e.  ( TotBnd `  X )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1757   {cab 2421   A.wral 2707   E.wrex 2708   _Vcvv 2964    i^i cin 3317    C_ wss 3318   ~Pcpw 3850   U.cuni 4081   U_ciun 4161   {copab 4339   ran crn 4830    Fn wfn 5403   -->wf 5404   -onto->wfo 5406   ` cfv 5408  (class class class)co 6082    e. cmpt2 6084   omcom 6467   Fincfn 7300   1c1 9273    / cdiv 9983   NNcn 10312   2c2 10361   NN0cn0 10569   RR+crp 10981   ^cexp 11851   *Metcxmt 17647   Metcme 17648   ballcbl 17649   MetOpencmopn 17652   Topctop 18342   Compccmp 18833   CMetcms 20609   TotBndctotbnd 28511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cc 8594  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-om 6468  df-1st 6568  df-2nd 6569  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-omul 6915  df-er 7091  df-map 7206  df-pm 7207  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-acn 8102  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-n0 10570  df-z 10637  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ico 11296  df-icc 11297  df-fz 11427  df-fl 11628  df-seq 11793  df-exp 11852  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-clim 12952  df-rlim 12953  df-rest 14346  df-topgen 14367  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-top 18347  df-bases 18349  df-topon 18350  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lm 18677  df-haus 18763  df-cmp 18834  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-cfil 20610  df-cau 20611  df-cmet 20612  df-totbnd 28513
This theorem is referenced by:  rrnheibor  28582
  Copyright terms: Public domain W3C validator