Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapval2 Structured version   Unicode version

Theorem hdmapval2 35485
Description: Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two  =/= hypothesis? Consider hdmaplem1 35421 through hdmaplem4 35424, which would become obsolete. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmapval2.h  |-  H  =  ( LHyp `  K
)
hdmapval2.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapval2.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapval2.v  |-  V  =  ( Base `  U
)
hdmapval2.n  |-  N  =  ( LSpan `  U )
hdmapval2.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmapval2.d  |-  D  =  ( Base `  C
)
hdmapval2.j  |-  J  =  ( (HVMap `  K
) `  W )
hdmapval2.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmapval2.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapval2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapval2.t  |-  ( ph  ->  T  e.  V )
hdmapval2.x  |-  ( ph  ->  X  e.  V )
hdmapval2.ne  |-  ( ph  ->  -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) )
Assertion
Ref Expression
hdmapval2  |-  ( ph  ->  ( S `  T
)  =  ( I `
 <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
)

Proof of Theorem hdmapval2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqidd 2444 . . 3  |-  ( ph  ->  ( S `  T
)  =  ( S `
 T ) )
2 hdmapval2.h . . . 4  |-  H  =  ( LHyp `  K
)
3 hdmapval2.e . . . 4  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
4 hdmapval2.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
5 hdmapval2.v . . . 4  |-  V  =  ( Base `  U
)
6 hdmapval2.n . . . 4  |-  N  =  ( LSpan `  U )
7 hdmapval2.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmapval2.d . . . 4  |-  D  =  ( Base `  C
)
9 hdmapval2.j . . . 4  |-  J  =  ( (HVMap `  K
) `  W )
10 hdmapval2.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
11 hdmapval2.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
12 hdmapval2.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 hdmapval2.t . . . 4  |-  ( ph  ->  T  e.  V )
142, 4, 5, 7, 8, 11, 12, 13hdmapcl 35483 . . . 4  |-  ( ph  ->  ( S `  T
)  e.  D )
152, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmapval2lem 35484 . . 3  |-  ( ph  ->  ( ( S `  T )  =  ( S `  T )  <->  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) ) )
161, 15mpbid 210 . 2  |-  ( ph  ->  A. z  e.  V  ( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) ) )
17 hdmapval2.x . 2  |-  ( ph  ->  X  e.  V )
18 hdmapval2.ne . 2  |-  ( ph  ->  -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) )
19 eleq1 2503 . . . . 5  |-  ( z  =  X  ->  (
z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  <->  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) ) )
2019notbid 294 . . . 4  |-  ( z  =  X  ->  ( -.  z  e.  (
( N `  { E } )  u.  ( N `  { T } ) )  <->  -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) ) ) )
21 oteq1 4073 . . . . . . 7  |-  ( z  =  X  ->  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  T >.  =  <. X ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. )
22 oteq3 4075 . . . . . . . . 9  |-  ( z  =  X  ->  <. E , 
( J `  E
) ,  z >.  =  <. E ,  ( J `  E ) ,  X >. )
2322fveq2d 5700 . . . . . . . 8  |-  ( z  =  X  ->  (
I `  <. E , 
( J `  E
) ,  z >.
)  =  ( I `
 <. E ,  ( J `  E ) ,  X >. )
)
2423oteq2d 4077 . . . . . . 7  |-  ( z  =  X  ->  <. X , 
( I `  <. E ,  ( J `  E ) ,  z
>. ) ,  T >.  = 
<. X ,  ( I `
 <. E ,  ( J `  E ) ,  X >. ) ,  T >. )
2521, 24eqtrd 2475 . . . . . 6  |-  ( z  =  X  ->  <. z ,  ( I `  <. E ,  ( J `
 E ) ,  z >. ) ,  T >.  =  <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
2625fveq2d 5700 . . . . 5  |-  ( z  =  X  ->  (
I `  <. z ,  ( I `  <. E ,  ( J `  E ) ,  z
>. ) ,  T >. )  =  ( I `  <. X ,  ( I `
 <. E ,  ( J `  E ) ,  X >. ) ,  T >. ) )
2726eqeq2d 2454 . . . 4  |-  ( z  =  X  ->  (
( S `  T
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. )  <-> 
( S `  T
)  =  ( I `
 <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
) )
2820, 27imbi12d 320 . . 3  |-  ( z  =  X  ->  (
( -.  z  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) )  <->  ( -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
) ) )
2928rspccv 3075 . 2  |-  ( A. z  e.  V  ( -.  z  e.  (
( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. z ,  ( I `  <. E , 
( J `  E
) ,  z >.
) ,  T >. ) )  ->  ( X  e.  V  ->  ( -.  X  e.  ( ( N `  { E } )  u.  ( N `  { T } ) )  -> 
( S `  T
)  =  ( I `
 <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
) ) )
3016, 17, 18, 29syl3c 61 1  |-  ( ph  ->  ( S `  T
)  =  ( I `
 <. X ,  ( I `  <. E , 
( J `  E
) ,  X >. ) ,  T >. )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720    u. cun 3331   {csn 3882   <.cop 3888   <.cotp 3890    _I cid 4636    |` cres 4847   ` cfv 5423   Basecbs 14179   LSpanclspn 17057   HLchlt 33000   LHypclh 33633   LTrncltrn 33750   DVecHcdvh 34728  LCDualclcd 35236  HVMapchvm 35406  HDMap1chdma1 35442  HDMapchdma 35443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-riotaBAD 32609
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-ot 3891  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-undef 6797  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-sca 14259  df-vsca 14260  df-0g 14385  df-mre 14529  df-mrc 14530  df-acs 14532  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-mnd 15420  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-subg 15683  df-cntz 15840  df-oppg 15866  df-lsm 16140  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-dvr 16780  df-drng 16839  df-lmod 16955  df-lss 17019  df-lsp 17058  df-lvec 17189  df-lsatoms 32626  df-lshyp 32627  df-lcv 32669  df-lfl 32708  df-lkr 32736  df-ldual 32774  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-llines 33147  df-lplanes 33148  df-lvols 33149  df-lines 33150  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754  df-trl 33808  df-tgrp 34392  df-tendo 34404  df-edring 34406  df-dveca 34652  df-disoa 34679  df-dvech 34729  df-dib 34789  df-dic 34823  df-dih 34879  df-doch 34998  df-djh 35045  df-lcdual 35237  df-mapd 35275  df-hvmap 35407  df-hdmap1 35444  df-hdmap 35445
This theorem is referenced by:  hdmapval0  35486  hdmapeveclem  35487  hdmapval3lemN  35490  hdmap10lem  35492  hdmap11lem1  35494
  Copyright terms: Public domain W3C validator