Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem9N Structured version   Unicode version

Theorem hdmaprnlem9N 35517
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 35296 and mapdcnv11N 35316. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h  |-  H  =  ( LHyp `  K
)
hdmaprnlem1.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmaprnlem1.v  |-  V  =  ( Base `  U
)
hdmaprnlem1.n  |-  N  =  ( LSpan `  U )
hdmaprnlem1.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmaprnlem1.l  |-  L  =  ( LSpan `  C )
hdmaprnlem1.m  |-  M  =  ( (mapd `  K
) `  W )
hdmaprnlem1.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmaprnlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmaprnlem1.se  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
hdmaprnlem1.ve  |-  ( ph  ->  v  e.  V )
hdmaprnlem1.e  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
hdmaprnlem1.ue  |-  ( ph  ->  u  e.  V )
hdmaprnlem1.un  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
hdmaprnlem1.d  |-  D  =  ( Base `  C
)
hdmaprnlem1.q  |-  Q  =  ( 0g `  C
)
hdmaprnlem1.o  |-  .0.  =  ( 0g `  U )
hdmaprnlem1.a  |-  .+b  =  ( +g  `  C )
hdmaprnlem1.t2  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
hdmaprnlem1.p  |-  .+  =  ( +g  `  U )
hdmaprnlem1.pt  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( M `  ( N `  { (
u  .+  t ) } ) ) )
Assertion
Ref Expression
hdmaprnlem9N  |-  ( ph  ->  s  =  ( S `
 t ) )

Proof of Theorem hdmaprnlem9N
StepHypRef Expression
1 hdmaprnlem1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2 hdmaprnlem1.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmaprnlem1.v . . . . . 6  |-  V  =  ( Base `  U
)
4 hdmaprnlem1.n . . . . . 6  |-  N  =  ( LSpan `  U )
5 hdmaprnlem1.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
6 hdmaprnlem1.l . . . . . 6  |-  L  =  ( LSpan `  C )
7 hdmaprnlem1.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
8 hdmaprnlem1.s . . . . . 6  |-  S  =  ( (HDMap `  K
) `  W )
9 hdmaprnlem1.k . . . . . 6  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
10 hdmaprnlem1.se . . . . . 6  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
11 hdmaprnlem1.ve . . . . . 6  |-  ( ph  ->  v  e.  V )
12 hdmaprnlem1.e . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
13 hdmaprnlem1.ue . . . . . 6  |-  ( ph  ->  u  e.  V )
14 hdmaprnlem1.un . . . . . 6  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
15 hdmaprnlem1.d . . . . . 6  |-  D  =  ( Base `  C
)
16 hdmaprnlem1.q . . . . . 6  |-  Q  =  ( 0g `  C
)
17 hdmaprnlem1.o . . . . . 6  |-  .0.  =  ( 0g `  U )
18 hdmaprnlem1.a . . . . . 6  |-  .+b  =  ( +g  `  C )
19 hdmaprnlem1.t2 . . . . . 6  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
20 hdmaprnlem1.p . . . . . 6  |-  .+  =  ( +g  `  U )
21 hdmaprnlem1.pt . . . . . 6  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( M `  ( N `  { (
u  .+  t ) } ) ) )
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem7N 35515 . . . . 5  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( L `  { ( ( S `
 u )  .+b  s ) } ) )
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21hdmaprnlem8N 35516 . . . . . 6  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( M `  ( N `  { t } ) ) )
241, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4N 35513 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { t } ) )  =  ( L `  {
s } ) )
2523, 24eleqtrd 2519 . . . . 5  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( L `  { s } ) )
2622, 25elind 3552 . . . 4  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( ( L `
 { ( ( S `  u ) 
.+b  s ) } )  i^i  ( L `
 { s } ) ) )
271, 5, 9lcdlvec 35248 . . . . 5  |-  ( ph  ->  C  e.  LVec )
281, 5, 9lcdlmod 35249 . . . . . 6  |-  ( ph  ->  C  e.  LMod )
291, 2, 3, 5, 15, 8, 9, 13hdmapcl 35490 . . . . . 6  |-  ( ph  ->  ( S `  u
)  e.  D )
3010eldifad 3352 . . . . . 6  |-  ( ph  ->  s  e.  D )
3115, 18lmodvacl 16974 . . . . . 6  |-  ( ( C  e.  LMod  /\  ( S `  u )  e.  D  /\  s  e.  D )  ->  (
( S `  u
)  .+b  s )  e.  D )
3228, 29, 30, 31syl3anc 1218 . . . . 5  |-  ( ph  ->  ( ( S `  u )  .+b  s
)  e.  D )
33 eqid 2443 . . . . . . . . . . . . . 14  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
3415, 33, 6lspsncl 17070 . . . . . . . . . . . . 13  |-  ( ( C  e.  LMod  /\  s  e.  D )  ->  ( L `  { s } )  e.  (
LSubSp `  C ) )
3528, 30, 34syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( L `  {
s } )  e.  ( LSubSp `  C )
)
361, 7, 5, 33, 9mapdrn2 35308 . . . . . . . . . . . 12  |-  ( ph  ->  ran  M  =  (
LSubSp `  C ) )
3735, 36eleqtrrd 2520 . . . . . . . . . . 11  |-  ( ph  ->  ( L `  {
s } )  e. 
ran  M )
381, 7, 9, 37mapdcnvid2 35314 . . . . . . . . . 10  |-  ( ph  ->  ( M `  ( `' M `  ( L `
 { s } ) ) )  =  ( L `  {
s } ) )
3912, 38eqtr4d 2478 . . . . . . . . 9  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( M `  ( `' M `  ( L `
 { s } ) ) ) )
40 eqid 2443 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
411, 2, 9dvhlmod 34767 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  LMod )
423, 40, 4lspsncl 17070 . . . . . . . . . . 11  |-  ( ( U  e.  LMod  /\  v  e.  V )  ->  ( N `  { v } )  e.  (
LSubSp `  U ) )
4341, 11, 42syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( N `  {
v } )  e.  ( LSubSp `  U )
)
441, 7, 2, 40, 9, 37mapdcnvcl 35309 . . . . . . . . . 10  |-  ( ph  ->  ( `' M `  ( L `  { s } ) )  e.  ( LSubSp `  U )
)
451, 2, 40, 7, 9, 43, 44mapd11 35296 . . . . . . . . 9  |-  ( ph  ->  ( ( M `  ( N `  { v } ) )  =  ( M `  ( `' M `  ( L `
 { s } ) ) )  <->  ( N `  { v } )  =  ( `' M `  ( L `  {
s } ) ) ) )
4639, 45mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( N `  {
v } )  =  ( `' M `  ( L `  { s } ) ) )
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18hdmaprnlem3N 35510 . . . . . . . 8  |-  ( ph  ->  ( N `  {
v } )  =/=  ( `' M `  ( L `  { ( ( S `  u
)  .+b  s ) } ) ) )
4846, 47eqnetrrd 2640 . . . . . . 7  |-  ( ph  ->  ( `' M `  ( L `  { s } ) )  =/=  ( `' M `  ( L `  { ( ( S `  u
)  .+b  s ) } ) ) )
4915, 33, 6lspsncl 17070 . . . . . . . . . . 11  |-  ( ( C  e.  LMod  /\  (
( S `  u
)  .+b  s )  e.  D )  ->  ( L `  { (
( S `  u
)  .+b  s ) } )  e.  (
LSubSp `  C ) )
5028, 32, 49syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  e.  ( LSubSp `  C )
)
5150, 36eleqtrrd 2520 . . . . . . . . 9  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  e. 
ran  M )
521, 7, 9, 37, 51mapdcnv11N 35316 . . . . . . . 8  |-  ( ph  ->  ( ( `' M `  ( L `  {
s } ) )  =  ( `' M `  ( L `  {
( ( S `  u )  .+b  s
) } ) )  <-> 
( L `  {
s } )  =  ( L `  {
( ( S `  u )  .+b  s
) } ) ) )
5352necon3bid 2655 . . . . . . 7  |-  ( ph  ->  ( ( `' M `  ( L `  {
s } ) )  =/=  ( `' M `  ( L `  {
( ( S `  u )  .+b  s
) } ) )  <-> 
( L `  {
s } )  =/=  ( L `  {
( ( S `  u )  .+b  s
) } ) ) )
5448, 53mpbid 210 . . . . . 6  |-  ( ph  ->  ( L `  {
s } )  =/=  ( L `  {
( ( S `  u )  .+b  s
) } ) )
5554necomd 2707 . . . . 5  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =/=  ( L `  {
s } ) )
5615, 16, 6, 27, 32, 30, 55lspdisj2 17220 . . . 4  |-  ( ph  ->  ( ( L `  { ( ( S `
 u )  .+b  s ) } )  i^i  ( L `  { s } ) )  =  { Q } )
5726, 56eleqtrd 2519 . . 3  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  { Q }
)
58 elsni 3914 . . 3  |-  ( ( s ( -g `  C
) ( S `  t ) )  e. 
{ Q }  ->  ( s ( -g `  C
) ( S `  t ) )  =  Q )
5957, 58syl 16 . 2  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  =  Q )
601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19hdmaprnlem4tN 35512 . . . 4  |-  ( ph  ->  t  e.  V )
611, 2, 3, 5, 15, 8, 9, 60hdmapcl 35490 . . 3  |-  ( ph  ->  ( S `  t
)  e.  D )
62 eqid 2443 . . . 4  |-  ( -g `  C )  =  (
-g `  C )
6315, 16, 62lmodsubeq0 17016 . . 3  |-  ( ( C  e.  LMod  /\  s  e.  D  /\  ( S `  t )  e.  D )  ->  (
( s ( -g `  C ) ( S `
 t ) )  =  Q  <->  s  =  ( S `  t ) ) )
6428, 30, 61, 63syl3anc 1218 . 2  |-  ( ph  ->  ( ( s (
-g `  C )
( S `  t
) )  =  Q  <-> 
s  =  ( S `
 t ) ) )
6559, 64mpbid 210 1  |-  ( ph  ->  s  =  ( S `
 t ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618    \ cdif 3337    i^i cin 3339   {csn 3889   `'ccnv 4851   ran crn 4853   ` cfv 5430  (class class class)co 6103   Basecbs 14186   +g cplusg 14250   0gc0g 14390   -gcsg 15425   LModclmod 16960   LSubSpclss 17025   LSpanclspn 17064   HLchlt 33007   LHypclh 33640   DVecHcdvh 34735  LCDualclcd 35243  mapdcmpd 35281  HDMapchdma 35450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-riotaBAD 32616
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-ot 3898  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-tpos 6757  df-undef 6804  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-sca 14266  df-vsca 14267  df-0g 14392  df-mre 14536  df-mrc 14537  df-acs 14539  df-poset 15128  df-plt 15140  df-lub 15156  df-glb 15157  df-join 15158  df-meet 15159  df-p0 15221  df-p1 15222  df-lat 15228  df-clat 15290  df-mnd 15427  df-submnd 15477  df-grp 15557  df-minusg 15558  df-sbg 15559  df-subg 15690  df-cntz 15847  df-oppg 15873  df-lsm 16147  df-cmn 16291  df-abl 16292  df-mgp 16604  df-ur 16616  df-rng 16659  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-invr 16776  df-dvr 16787  df-drng 16846  df-lmod 16962  df-lss 17026  df-lsp 17065  df-lvec 17196  df-lsatoms 32633  df-lshyp 32634  df-lcv 32676  df-lfl 32715  df-lkr 32743  df-ldual 32781  df-oposet 32833  df-ol 32835  df-oml 32836  df-covers 32923  df-ats 32924  df-atl 32955  df-cvlat 32979  df-hlat 33008  df-llines 33154  df-lplanes 33155  df-lvols 33156  df-lines 33157  df-psubsp 33159  df-pmap 33160  df-padd 33452  df-lhyp 33644  df-laut 33645  df-ldil 33760  df-ltrn 33761  df-trl 33815  df-tgrp 34399  df-tendo 34411  df-edring 34413  df-dveca 34659  df-disoa 34686  df-dvech 34736  df-dib 34796  df-dic 34830  df-dih 34886  df-doch 35005  df-djh 35052  df-lcdual 35244  df-mapd 35282  df-hvmap 35414  df-hdmap1 35451  df-hdmap 35452
This theorem is referenced by:  hdmaprnlem10N  35519
  Copyright terms: Public domain W3C validator