Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem8N Structured version   Unicode version

Theorem hdmaprnlem8N 37687
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h  |-  H  =  ( LHyp `  K
)
hdmaprnlem1.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmaprnlem1.v  |-  V  =  ( Base `  U
)
hdmaprnlem1.n  |-  N  =  ( LSpan `  U )
hdmaprnlem1.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmaprnlem1.l  |-  L  =  ( LSpan `  C )
hdmaprnlem1.m  |-  M  =  ( (mapd `  K
) `  W )
hdmaprnlem1.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmaprnlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmaprnlem1.se  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
hdmaprnlem1.ve  |-  ( ph  ->  v  e.  V )
hdmaprnlem1.e  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
hdmaprnlem1.ue  |-  ( ph  ->  u  e.  V )
hdmaprnlem1.un  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
hdmaprnlem1.d  |-  D  =  ( Base `  C
)
hdmaprnlem1.q  |-  Q  =  ( 0g `  C
)
hdmaprnlem1.o  |-  .0.  =  ( 0g `  U )
hdmaprnlem1.a  |-  .+b  =  ( +g  `  C )
hdmaprnlem1.t2  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
hdmaprnlem1.p  |-  .+  =  ( +g  `  U )
hdmaprnlem1.pt  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( M `  ( N `  { (
u  .+  t ) } ) ) )
Assertion
Ref Expression
hdmaprnlem8N  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( M `  ( N `  { t } ) ) )

Proof of Theorem hdmaprnlem8N
StepHypRef Expression
1 hdmaprnlem1.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmaprnlem1.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
3 hdmaprnlem1.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 37420 . 2  |-  ( ph  ->  C  e.  LMod )
5 hdmaprnlem1.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
6 hdmaprnlem1.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
7 eqid 2457 . . 3  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
8 eqid 2457 . . 3  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
91, 6, 3dvhlmod 36938 . . . 4  |-  ( ph  ->  U  e.  LMod )
10 hdmaprnlem1.v . . . . 5  |-  V  =  ( Base `  U
)
11 hdmaprnlem1.n . . . . 5  |-  N  =  ( LSpan `  U )
12 hdmaprnlem1.l . . . . 5  |-  L  =  ( LSpan `  C )
13 hdmaprnlem1.s . . . . 5  |-  S  =  ( (HDMap `  K
) `  W )
14 hdmaprnlem1.se . . . . 5  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
15 hdmaprnlem1.ve . . . . 5  |-  ( ph  ->  v  e.  V )
16 hdmaprnlem1.e . . . . 5  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
17 hdmaprnlem1.ue . . . . 5  |-  ( ph  ->  u  e.  V )
18 hdmaprnlem1.un . . . . 5  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
19 hdmaprnlem1.d . . . . 5  |-  D  =  ( Base `  C
)
20 hdmaprnlem1.q . . . . 5  |-  Q  =  ( 0g `  C
)
21 hdmaprnlem1.o . . . . 5  |-  .0.  =  ( 0g `  U )
22 hdmaprnlem1.a . . . . 5  |-  .+b  =  ( +g  `  C )
23 hdmaprnlem1.t2 . . . . 5  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
241, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4tN 37683 . . . 4  |-  ( ph  ->  t  e.  V )
2510, 7, 11lspsncl 17749 . . . 4  |-  ( ( U  e.  LMod  /\  t  e.  V )  ->  ( N `  { t } )  e.  (
LSubSp `  U ) )
269, 24, 25syl2anc 661 . . 3  |-  ( ph  ->  ( N `  {
t } )  e.  ( LSubSp `  U )
)
271, 5, 6, 7, 2, 8, 3, 26mapdcl2 37484 . 2  |-  ( ph  ->  ( M `  ( N `  { t } ) )  e.  ( LSubSp `  C )
)
2814eldifad 3483 . . . 4  |-  ( ph  ->  s  e.  D )
2919, 12lspsnid 17765 . . . 4  |-  ( ( C  e.  LMod  /\  s  e.  D )  ->  s  e.  ( L `  {
s } ) )
304, 28, 29syl2anc 661 . . 3  |-  ( ph  ->  s  e.  ( L `
 { s } ) )
311, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4N 37684 . . 3  |-  ( ph  ->  ( M `  ( N `  { t } ) )  =  ( L `  {
s } ) )
3230, 31eleqtrrd 2548 . 2  |-  ( ph  ->  s  e.  ( M `
 ( N `  { t } ) ) )
331, 6, 10, 2, 19, 13, 3, 24hdmapcl 37661 . . . 4  |-  ( ph  ->  ( S `  t
)  e.  D )
3419, 12lspsnid 17765 . . . 4  |-  ( ( C  e.  LMod  /\  ( S `  t )  e.  D )  ->  ( S `  t )  e.  ( L `  {
( S `  t
) } ) )
354, 33, 34syl2anc 661 . . 3  |-  ( ph  ->  ( S `  t
)  e.  ( L `
 { ( S `
 t ) } ) )
361, 6, 10, 11, 2, 12, 5, 13, 3, 24hdmap10 37671 . . 3  |-  ( ph  ->  ( M `  ( N `  { t } ) )  =  ( L `  {
( S `  t
) } ) )
3735, 36eleqtrrd 2548 . 2  |-  ( ph  ->  ( S `  t
)  e.  ( M `
 ( N `  { t } ) ) )
38 eqid 2457 . . 3  |-  ( -g `  C )  =  (
-g `  C )
3938, 8lssvsubcl 17716 . 2  |-  ( ( ( C  e.  LMod  /\  ( M `  ( N `  { t } ) )  e.  ( LSubSp `  C )
)  /\  ( s  e.  ( M `  ( N `  { t } ) )  /\  ( S `  t )  e.  ( M `  ( N `  { t } ) ) ) )  ->  ( s
( -g `  C ) ( S `  t
) )  e.  ( M `  ( N `
 { t } ) ) )
404, 27, 32, 37, 39syl22anc 1229 1  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( M `  ( N `  { t } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    \ cdif 3468   {csn 4032   ` cfv 5594  (class class class)co 6296   Basecbs 14643   +g cplusg 14711   0gc0g 14856   -gcsg 16181   LModclmod 17638   LSubSpclss 17704   LSpanclspn 17743   HLchlt 35176   LHypclh 35809   DVecHcdvh 36906  LCDualclcd 37414  mapdcmpd 37452  HDMapchdma 37621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34785
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-ot 4041  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-0g 14858  df-mre 15002  df-mrc 15003  df-acs 15005  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-p1 15796  df-lat 15802  df-clat 15864  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-subg 16324  df-cntz 16481  df-oppg 16507  df-lsm 16782  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-oppr 17398  df-dvdsr 17416  df-unit 17417  df-invr 17447  df-dvr 17458  df-drng 17524  df-lmod 17640  df-lss 17705  df-lsp 17744  df-lvec 17875  df-lsatoms 34802  df-lshyp 34803  df-lcv 34845  df-lfl 34884  df-lkr 34912  df-ldual 34950  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325  df-lines 35326  df-psubsp 35328  df-pmap 35329  df-padd 35621  df-lhyp 35813  df-laut 35814  df-ldil 35929  df-ltrn 35930  df-trl 35985  df-tgrp 36570  df-tendo 36582  df-edring 36584  df-dveca 36830  df-disoa 36857  df-dvech 36907  df-dib 36967  df-dic 37001  df-dih 37057  df-doch 37176  df-djh 37223  df-lcdual 37415  df-mapd 37453  df-hvmap 37585  df-hdmap1 37622  df-hdmap 37623
This theorem is referenced by:  hdmaprnlem9N  37688
  Copyright terms: Public domain W3C validator