Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem7N Structured version   Unicode version

Theorem hdmaprnlem7N 37707
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St  e. G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h  |-  H  =  ( LHyp `  K
)
hdmaprnlem1.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmaprnlem1.v  |-  V  =  ( Base `  U
)
hdmaprnlem1.n  |-  N  =  ( LSpan `  U )
hdmaprnlem1.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmaprnlem1.l  |-  L  =  ( LSpan `  C )
hdmaprnlem1.m  |-  M  =  ( (mapd `  K
) `  W )
hdmaprnlem1.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmaprnlem1.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmaprnlem1.se  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
hdmaprnlem1.ve  |-  ( ph  ->  v  e.  V )
hdmaprnlem1.e  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
hdmaprnlem1.ue  |-  ( ph  ->  u  e.  V )
hdmaprnlem1.un  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
hdmaprnlem1.d  |-  D  =  ( Base `  C
)
hdmaprnlem1.q  |-  Q  =  ( 0g `  C
)
hdmaprnlem1.o  |-  .0.  =  ( 0g `  U )
hdmaprnlem1.a  |-  .+b  =  ( +g  `  C )
hdmaprnlem1.t2  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
hdmaprnlem1.p  |-  .+  =  ( +g  `  U )
hdmaprnlem1.pt  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( M `  ( N `  { (
u  .+  t ) } ) ) )
Assertion
Ref Expression
hdmaprnlem7N  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( L `  { ( ( S `
 u )  .+b  s ) } ) )

Proof of Theorem hdmaprnlem7N
StepHypRef Expression
1 hdmaprnlem1.d . . 3  |-  D  =  ( Base `  C
)
2 hdmaprnlem1.a . . 3  |-  .+b  =  ( +g  `  C )
3 eqid 2457 . . 3  |-  ( -g `  C )  =  (
-g `  C )
4 hdmaprnlem1.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 hdmaprnlem1.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
6 hdmaprnlem1.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
74, 5, 6lcdlmod 37441 . . . 4  |-  ( ph  ->  C  e.  LMod )
8 lmodabl 17684 . . . 4  |-  ( C  e.  LMod  ->  C  e. 
Abel )
97, 8syl 16 . . 3  |-  ( ph  ->  C  e.  Abel )
10 hdmaprnlem1.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 hdmaprnlem1.v . . . 4  |-  V  =  ( Base `  U
)
12 hdmaprnlem1.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
13 hdmaprnlem1.ue . . . 4  |-  ( ph  ->  u  e.  V )
144, 10, 11, 5, 1, 12, 6, 13hdmapcl 37682 . . 3  |-  ( ph  ->  ( S `  u
)  e.  D )
15 hdmaprnlem1.se . . . 4  |-  ( ph  ->  s  e.  ( D 
\  { Q }
) )
1615eldifad 3483 . . 3  |-  ( ph  ->  s  e.  D )
17 hdmaprnlem1.n . . . . 5  |-  N  =  ( LSpan `  U )
18 hdmaprnlem1.l . . . . 5  |-  L  =  ( LSpan `  C )
19 hdmaprnlem1.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
20 hdmaprnlem1.ve . . . . 5  |-  ( ph  ->  v  e.  V )
21 hdmaprnlem1.e . . . . 5  |-  ( ph  ->  ( M `  ( N `  { v } ) )  =  ( L `  {
s } ) )
22 hdmaprnlem1.un . . . . 5  |-  ( ph  ->  -.  u  e.  ( N `  { v } ) )
23 hdmaprnlem1.q . . . . 5  |-  Q  =  ( 0g `  C
)
24 hdmaprnlem1.o . . . . 5  |-  .0.  =  ( 0g `  U )
25 hdmaprnlem1.t2 . . . . 5  |-  ( ph  ->  t  e.  ( ( N `  { v } )  \  {  .0.  } ) )
264, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25hdmaprnlem4tN 37704 . . . 4  |-  ( ph  ->  t  e.  V )
274, 10, 11, 5, 1, 12, 6, 26hdmapcl 37682 . . 3  |-  ( ph  ->  ( S `  t
)  e.  D )
281, 2, 3, 9, 14, 16, 27, 9, 14, 16, 27ablpnpcan 16957 . 2  |-  ( ph  ->  ( ( ( S `
 u )  .+b  s ) ( -g `  C ) ( ( S `  u ) 
.+b  ( S `  t ) ) )  =  ( s (
-g `  C )
( S `  t
) ) )
291, 2lmodvacl 17653 . . . . 5  |-  ( ( C  e.  LMod  /\  ( S `  u )  e.  D  /\  s  e.  D )  ->  (
( S `  u
)  .+b  s )  e.  D )
307, 14, 16, 29syl3anc 1228 . . . 4  |-  ( ph  ->  ( ( S `  u )  .+b  s
)  e.  D )
31 eqid 2457 . . . . 5  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
321, 31, 18lspsncl 17750 . . . 4  |-  ( ( C  e.  LMod  /\  (
( S `  u
)  .+b  s )  e.  D )  ->  ( L `  { (
( S `  u
)  .+b  s ) } )  e.  (
LSubSp `  C ) )
337, 30, 32syl2anc 661 . . 3  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  e.  ( LSubSp `  C )
)
341, 18lspsnid 17766 . . . 4  |-  ( ( C  e.  LMod  /\  (
( S `  u
)  .+b  s )  e.  D )  ->  (
( S `  u
)  .+b  s )  e.  ( L `  {
( ( S `  u )  .+b  s
) } ) )
357, 30, 34syl2anc 661 . . 3  |-  ( ph  ->  ( ( S `  u )  .+b  s
)  e.  ( L `
 { ( ( S `  u ) 
.+b  s ) } ) )
361, 2lmodvacl 17653 . . . . . 6  |-  ( ( C  e.  LMod  /\  ( S `  u )  e.  D  /\  ( S `  t )  e.  D )  ->  (
( S `  u
)  .+b  ( S `  t ) )  e.  D )
377, 14, 27, 36syl3anc 1228 . . . . 5  |-  ( ph  ->  ( ( S `  u )  .+b  ( S `  t )
)  e.  D )
381, 18lspsnid 17766 . . . . 5  |-  ( ( C  e.  LMod  /\  (
( S `  u
)  .+b  ( S `  t ) )  e.  D )  ->  (
( S `  u
)  .+b  ( S `  t ) )  e.  ( L `  {
( ( S `  u )  .+b  ( S `  t )
) } ) )
397, 37, 38syl2anc 661 . . . 4  |-  ( ph  ->  ( ( S `  u )  .+b  ( S `  t )
)  e.  ( L `
 { ( ( S `  u ) 
.+b  ( S `  t ) ) } ) )
40 hdmaprnlem1.p . . . . 5  |-  .+  =  ( +g  `  U )
41 hdmaprnlem1.pt . . . . 5  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( M `  ( N `  { (
u  .+  t ) } ) ) )
424, 10, 11, 17, 5, 18, 19, 12, 6, 15, 20, 21, 13, 22, 1, 23, 24, 2, 25, 40, 41hdmaprnlem6N 37706 . . . 4  |-  ( ph  ->  ( L `  {
( ( S `  u )  .+b  s
) } )  =  ( L `  {
( ( S `  u )  .+b  ( S `  t )
) } ) )
4339, 42eleqtrrd 2548 . . 3  |-  ( ph  ->  ( ( S `  u )  .+b  ( S `  t )
)  e.  ( L `
 { ( ( S `  u ) 
.+b  s ) } ) )
443, 31lssvsubcl 17717 . . 3  |-  ( ( ( C  e.  LMod  /\  ( L `  {
( ( S `  u )  .+b  s
) } )  e.  ( LSubSp `  C )
)  /\  ( (
( S `  u
)  .+b  s )  e.  ( L `  {
( ( S `  u )  .+b  s
) } )  /\  ( ( S `  u )  .+b  ( S `  t )
)  e.  ( L `
 { ( ( S `  u ) 
.+b  s ) } ) ) )  -> 
( ( ( S `
 u )  .+b  s ) ( -g `  C ) ( ( S `  u ) 
.+b  ( S `  t ) ) )  e.  ( L `  { ( ( S `
 u )  .+b  s ) } ) )
457, 33, 35, 43, 44syl22anc 1229 . 2  |-  ( ph  ->  ( ( ( S `
 u )  .+b  s ) ( -g `  C ) ( ( S `  u ) 
.+b  ( S `  t ) ) )  e.  ( L `  { ( ( S `
 u )  .+b  s ) } ) )
4628, 45eqeltrrd 2546 1  |-  ( ph  ->  ( s ( -g `  C ) ( S `
 t ) )  e.  ( L `  { ( ( S `
 u )  .+b  s ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    \ cdif 3468   {csn 4032   ` cfv 5594  (class class class)co 6296   Basecbs 14644   +g cplusg 14712   0gc0g 14857   -gcsg 16182   Abelcabl 16926   LModclmod 17639   LSubSpclss 17705   LSpanclspn 17744   HLchlt 35197   LHypclh 35830   DVecHcdvh 36927  LCDualclcd 37435  mapdcmpd 37473  HDMapchdma 37642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-ot 4041  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-0g 14859  df-mre 15003  df-mrc 15004  df-acs 15006  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-subg 16325  df-cntz 16482  df-oppg 16508  df-lsm 16783  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-drng 17525  df-lmod 17641  df-lss 17706  df-lsp 17745  df-lvec 17876  df-lsatoms 34823  df-lshyp 34824  df-lcv 34866  df-lfl 34905  df-lkr 34933  df-ldual 34971  df-oposet 35023  df-ol 35025  df-oml 35026  df-covers 35113  df-ats 35114  df-atl 35145  df-cvlat 35169  df-hlat 35198  df-llines 35344  df-lplanes 35345  df-lvols 35346  df-lines 35347  df-psubsp 35349  df-pmap 35350  df-padd 35642  df-lhyp 35834  df-laut 35835  df-ldil 35950  df-ltrn 35951  df-trl 36006  df-tgrp 36591  df-tendo 36603  df-edring 36605  df-dveca 36851  df-disoa 36878  df-dvech 36928  df-dib 36988  df-dic 37022  df-dih 37078  df-doch 37197  df-djh 37244  df-lcdual 37436  df-mapd 37474  df-hvmap 37606  df-hdmap1 37643  df-hdmap 37644
This theorem is referenced by:  hdmaprnlem9N  37709
  Copyright terms: Public domain W3C validator