Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem4 Unicode version

Theorem hdmapinvlem4 32407
Description: Part 1.1 of Proposition 1 of [Baer] p. 110. We use  C,  D,  I, and  J for Baer's u, v, s, and t. Our unit vector  E has the required properties for his w by hdmapevec2 32322. Our  ( ( S `  D ) `  C ) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h  |-  H  =  ( LHyp `  K
)
hdmapinvlem3.e  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
hdmapinvlem3.o  |-  O  =  ( ( ocH `  K
) `  W )
hdmapinvlem3.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmapinvlem3.v  |-  V  =  ( Base `  U
)
hdmapinvlem3.p  |-  .+  =  ( +g  `  U )
hdmapinvlem3.m  |-  .-  =  ( -g `  U )
hdmapinvlem3.q  |-  .x.  =  ( .s `  U )
hdmapinvlem3.r  |-  R  =  (Scalar `  U )
hdmapinvlem3.b  |-  B  =  ( Base `  R
)
hdmapinvlem3.t  |-  .X.  =  ( .r `  R )
hdmapinvlem3.z  |-  .0.  =  ( 0g `  R )
hdmapinvlem3.s  |-  S  =  ( (HDMap `  K
) `  W )
hdmapinvlem3.g  |-  G  =  ( (HGMap `  K
) `  W )
hdmapinvlem3.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmapinvlem3.c  |-  ( ph  ->  C  e.  ( O `
 { E }
) )
hdmapinvlem3.d  |-  ( ph  ->  D  e.  ( O `
 { E }
) )
hdmapinvlem3.i  |-  ( ph  ->  I  e.  B )
hdmapinvlem3.j  |-  ( ph  ->  J  e.  B )
hdmapinvlem3.ij  |-  ( ph  ->  ( I  .X.  ( G `  J )
)  =  ( ( S `  D ) `
 C ) )
Assertion
Ref Expression
hdmapinvlem4  |-  ( ph  ->  ( J  .X.  ( G `  I )
)  =  ( ( S `  C ) `
 D ) )

Proof of Theorem hdmapinvlem4
StepHypRef Expression
1 hdmapinvlem3.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmapinvlem3.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmapinvlem3.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmapinvlem3.m . . . 4  |-  .-  =  ( -g `  U )
5 hdmapinvlem3.r . . . 4  |-  R  =  (Scalar `  U )
6 eqid 2404 . . . 4  |-  ( -g `  R )  =  (
-g `  R )
7 hdmapinvlem3.s . . . 4  |-  S  =  ( (HDMap `  K
) `  W )
8 hdmapinvlem3.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
91, 2, 8dvhlmod 31593 . . . . 5  |-  ( ph  ->  U  e.  LMod )
10 hdmapinvlem3.j . . . . 5  |-  ( ph  ->  J  e.  B )
11 eqid 2404 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2404 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
13 eqid 2404 . . . . . . 7  |-  ( 0g
`  U )  =  ( 0g `  U
)
14 hdmapinvlem3.e . . . . . . 7  |-  E  = 
<. (  _I  |`  ( Base `  K ) ) ,  (  _I  |`  (
( LTrn `  K ) `  W ) ) >.
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 31595 . . . . . 6  |-  ( ph  ->  E  e.  ( V 
\  { ( 0g
`  U ) } ) )
1615eldifad 3292 . . . . 5  |-  ( ph  ->  E  e.  V )
17 hdmapinvlem3.q . . . . . 6  |-  .x.  =  ( .s `  U )
18 hdmapinvlem3.b . . . . . 6  |-  B  =  ( Base `  R
)
193, 5, 17, 18lmodvscl 15922 . . . . 5  |-  ( ( U  e.  LMod  /\  J  e.  B  /\  E  e.  V )  ->  ( J  .x.  E )  e.  V )
209, 10, 16, 19syl3anc 1184 . . . 4  |-  ( ph  ->  ( J  .x.  E
)  e.  V )
2116snssd 3903 . . . . . 6  |-  ( ph  ->  { E }  C_  V )
22 hdmapinvlem3.o . . . . . . 7  |-  O  =  ( ( ocH `  K
) `  W )
231, 2, 3, 22dochssv 31838 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { E }  C_  V )  ->  ( O `  { E } )  C_  V
)
248, 21, 23syl2anc 643 . . . . 5  |-  ( ph  ->  ( O `  { E } )  C_  V
)
25 hdmapinvlem3.d . . . . 5  |-  ( ph  ->  D  e.  ( O `
 { E }
) )
2624, 25sseldd 3309 . . . 4  |-  ( ph  ->  D  e.  V )
27 hdmapinvlem3.i . . . . . 6  |-  ( ph  ->  I  e.  B )
283, 5, 17, 18lmodvscl 15922 . . . . . 6  |-  ( ( U  e.  LMod  /\  I  e.  B  /\  E  e.  V )  ->  (
I  .x.  E )  e.  V )
299, 27, 16, 28syl3anc 1184 . . . . 5  |-  ( ph  ->  ( I  .x.  E
)  e.  V )
30 hdmapinvlem3.c . . . . . 6  |-  ( ph  ->  C  e.  ( O `
 { E }
) )
3124, 30sseldd 3309 . . . . 5  |-  ( ph  ->  C  e.  V )
32 hdmapinvlem3.p . . . . . 6  |-  .+  =  ( +g  `  U )
333, 32lmodvacl 15919 . . . . 5  |-  ( ( U  e.  LMod  /\  (
I  .x.  E )  e.  V  /\  C  e.  V )  ->  (
( I  .x.  E
)  .+  C )  e.  V )
349, 29, 31, 33syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( I  .x.  E )  .+  C
)  e.  V )
351, 2, 3, 4, 5, 6, 7, 8, 20, 26, 34hdmaplns1 32394 . . 3  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  (
( J  .x.  E
)  .-  D )
)  =  ( ( ( S `  (
( I  .x.  E
)  .+  C )
) `  ( J  .x.  E ) ) (
-g `  R )
( ( S `  ( ( I  .x.  E )  .+  C
) ) `  D
) ) )
36 hdmapinvlem3.t . . . . 5  |-  .X.  =  ( .r `  R )
37 hdmapinvlem3.z . . . . 5  |-  .0.  =  ( 0g `  R )
38 hdmapinvlem3.g . . . . 5  |-  G  =  ( (HGMap `  K
) `  W )
39 hdmapinvlem3.ij . . . . 5  |-  ( ph  ->  ( I  .X.  ( G `  J )
)  =  ( ( S `  D ) `
 C ) )
401, 14, 22, 2, 3, 32, 4, 17, 5, 18, 36, 37, 7, 38, 8, 30, 25, 27, 10, 39hdmapinvlem3 32406 . . . 4  |-  ( ph  ->  ( ( S `  ( ( J  .x.  E )  .-  D
) ) `  (
( I  .x.  E
)  .+  C )
)  =  .0.  )
413, 4lmodvsubcl 15944 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( J  .x.  E )  e.  V  /\  D  e.  V )  ->  (
( J  .x.  E
)  .-  D )  e.  V )
429, 20, 26, 41syl3anc 1184 . . . . 5  |-  ( ph  ->  ( ( J  .x.  E )  .-  D
)  e.  V )
431, 2, 3, 5, 37, 7, 8, 42, 34hdmapip0com 32403 . . . 4  |-  ( ph  ->  ( ( ( S `
 ( ( J 
.x.  E )  .-  D ) ) `  ( ( I  .x.  E )  .+  C
) )  =  .0.  <->  ( ( S `  (
( I  .x.  E
)  .+  C )
) `  ( ( J  .x.  E )  .-  D ) )  =  .0.  ) )
4440, 43mpbid 202 . . 3  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  (
( J  .x.  E
)  .-  D )
)  =  .0.  )
451, 2, 3, 17, 5, 18, 36, 7, 8, 16, 34, 10hdmaplnm1 32395 . . . . 5  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  ( J  .x.  E ) )  =  ( J  .X.  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  E
) ) )
46 eqid 2404 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
471, 2, 3, 32, 5, 46, 7, 8, 16, 29, 31hdmaplna2 32396 . . . . . . 7  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  E
)  =  ( ( ( S `  (
I  .x.  E )
) `  E )
( +g  `  R ) ( ( S `  C ) `  E
) ) )
481, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 30hdmapinvlem2 32405 . . . . . . . 8  |-  ( ph  ->  ( ( S `  C ) `  E
)  =  .0.  )
4948oveq2d 6056 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 ( I  .x.  E ) ) `  E ) ( +g  `  R ) ( ( S `  C ) `
 E ) )  =  ( ( ( S `  ( I 
.x.  E ) ) `
 E ) ( +g  `  R )  .0.  ) )
505lmodrng 15913 . . . . . . . . . . 11  |-  ( U  e.  LMod  ->  R  e. 
Ring )
519, 50syl 16 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
52 rnggrp 15624 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  R  e. 
Grp )
5351, 52syl 16 . . . . . . . . 9  |-  ( ph  ->  R  e.  Grp )
541, 2, 3, 5, 18, 7, 8, 16, 29hdmapipcl 32391 . . . . . . . . 9  |-  ( ph  ->  ( ( S `  ( I  .x.  E ) ) `  E )  e.  B )
5518, 46, 37grprid 14791 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  ( ( S `  ( I  .x.  E ) ) `  E )  e.  B )  -> 
( ( ( S `
 ( I  .x.  E ) ) `  E ) ( +g  `  R )  .0.  )  =  ( ( S `
 ( I  .x.  E ) ) `  E ) )
5653, 54, 55syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( ( ( S `
 ( I  .x.  E ) ) `  E ) ( +g  `  R )  .0.  )  =  ( ( S `
 ( I  .x.  E ) ) `  E ) )
571, 2, 3, 17, 5, 18, 36, 7, 38, 8, 16, 16, 27hdmapglnm2 32397 . . . . . . . 8  |-  ( ph  ->  ( ( S `  ( I  .x.  E ) ) `  E )  =  ( ( ( S `  E ) `
 E )  .X.  ( G `  I ) ) )
58 eqid 2404 . . . . . . . . . . 11  |-  ( (HVMap `  K ) `  W
)  =  ( (HVMap `  K ) `  W
)
59 eqid 2404 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
601, 14, 58, 7, 8, 2, 5, 59hdmapevec2 32322 . . . . . . . . . 10  |-  ( ph  ->  ( ( S `  E ) `  E
)  =  ( 1r
`  R ) )
6160oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( ( S `
 E ) `  E )  .X.  ( G `  I )
)  =  ( ( 1r `  R ) 
.X.  ( G `  I ) ) )
621, 2, 5, 18, 38, 8, 27hgmapcl 32375 . . . . . . . . . 10  |-  ( ph  ->  ( G `  I
)  e.  B )
6318, 36, 59rnglidm 15642 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( G `  I )  e.  B )  ->  (
( 1r `  R
)  .X.  ( G `  I ) )  =  ( G `  I
) )
6451, 62, 63syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( 1r `  R )  .X.  ( G `  I )
)  =  ( G `
 I ) )
6561, 64eqtrd 2436 . . . . . . . 8  |-  ( ph  ->  ( ( ( S `
 E ) `  E )  .X.  ( G `  I )
)  =  ( G `
 I ) )
6656, 57, 653eqtrd 2440 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 ( I  .x.  E ) ) `  E ) ( +g  `  R )  .0.  )  =  ( G `  I ) )
6747, 49, 663eqtrd 2440 . . . . . 6  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  E
)  =  ( G `
 I ) )
6867oveq2d 6056 . . . . 5  |-  ( ph  ->  ( J  .X.  (
( S `  (
( I  .x.  E
)  .+  C )
) `  E )
)  =  ( J 
.X.  ( G `  I ) ) )
6945, 68eqtrd 2436 . . . 4  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  ( J  .x.  E ) )  =  ( J  .X.  ( G `  I ) ) )
701, 2, 3, 32, 5, 46, 7, 8, 26, 29, 31hdmaplna2 32396 . . . . 5  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  D
)  =  ( ( ( S `  (
I  .x.  E )
) `  D )
( +g  `  R ) ( ( S `  C ) `  D
) ) )
711, 2, 3, 17, 5, 18, 36, 7, 38, 8, 26, 16, 27hdmapglnm2 32397 . . . . . . 7  |-  ( ph  ->  ( ( S `  ( I  .x.  E ) ) `  D )  =  ( ( ( S `  E ) `
 D )  .X.  ( G `  I ) ) )
721, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 25hdmapinvlem1 32404 . . . . . . . 8  |-  ( ph  ->  ( ( S `  E ) `  D
)  =  .0.  )
7372oveq1d 6055 . . . . . . 7  |-  ( ph  ->  ( ( ( S `
 E ) `  D )  .X.  ( G `  I )
)  =  (  .0.  .X.  ( G `  I
) ) )
7418, 36, 37rnglz 15655 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( G `  I )  e.  B )  ->  (  .0.  .X.  ( G `  I ) )  =  .0.  )
7551, 62, 74syl2anc 643 . . . . . . 7  |-  ( ph  ->  (  .0.  .X.  ( G `  I )
)  =  .0.  )
7671, 73, 753eqtrd 2440 . . . . . 6  |-  ( ph  ->  ( ( S `  ( I  .x.  E ) ) `  D )  =  .0.  )
7776oveq1d 6055 . . . . 5  |-  ( ph  ->  ( ( ( S `
 ( I  .x.  E ) ) `  D ) ( +g  `  R ) ( ( S `  C ) `
 D ) )  =  (  .0.  ( +g  `  R ) ( ( S `  C
) `  D )
) )
781, 2, 3, 5, 18, 7, 8, 26, 31hdmapipcl 32391 . . . . . 6  |-  ( ph  ->  ( ( S `  C ) `  D
)  e.  B )
7918, 46, 37grplid 14790 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( S `  C ) `  D
)  e.  B )  ->  (  .0.  ( +g  `  R ) ( ( S `  C
) `  D )
)  =  ( ( S `  C ) `
 D ) )
8053, 78, 79syl2anc 643 . . . . 5  |-  ( ph  ->  (  .0.  ( +g  `  R ) ( ( S `  C ) `
 D ) )  =  ( ( S `
 C ) `  D ) )
8170, 77, 803eqtrd 2440 . . . 4  |-  ( ph  ->  ( ( S `  ( ( I  .x.  E )  .+  C
) ) `  D
)  =  ( ( S `  C ) `
 D ) )
8269, 81oveq12d 6058 . . 3  |-  ( ph  ->  ( ( ( S `
 ( ( I 
.x.  E )  .+  C ) ) `  ( J  .x.  E ) ) ( -g `  R
) ( ( S `
 ( ( I 
.x.  E )  .+  C ) ) `  D ) )  =  ( ( J  .X.  ( G `  I ) ) ( -g `  R
) ( ( S `
 C ) `  D ) ) )
8335, 44, 823eqtr3rd 2445 . 2  |-  ( ph  ->  ( ( J  .X.  ( G `  I ) ) ( -g `  R
) ( ( S `
 C ) `  D ) )  =  .0.  )
845, 18, 36lmodmcl 15917 . . . 4  |-  ( ( U  e.  LMod  /\  J  e.  B  /\  ( G `  I )  e.  B )  ->  ( J  .X.  ( G `  I ) )  e.  B )
859, 10, 62, 84syl3anc 1184 . . 3  |-  ( ph  ->  ( J  .X.  ( G `  I )
)  e.  B )
8618, 37, 6grpsubeq0 14830 . . 3  |-  ( ( R  e.  Grp  /\  ( J  .X.  ( G `
 I ) )  e.  B  /\  (
( S `  C
) `  D )  e.  B )  ->  (
( ( J  .X.  ( G `  I ) ) ( -g `  R
) ( ( S `
 C ) `  D ) )  =  .0.  <->  ( J  .X.  ( G `  I ) )  =  ( ( S `  C ) `
 D ) ) )
8753, 85, 78, 86syl3anc 1184 . 2  |-  ( ph  ->  ( ( ( J 
.X.  ( G `  I ) ) (
-g `  R )
( ( S `  C ) `  D
) )  =  .0.  <->  ( J  .X.  ( G `  I ) )  =  ( ( S `  C ) `  D
) ) )
8883, 87mpbid 202 1  |-  ( ph  ->  ( J  .X.  ( G `  I )
)  =  ( ( S `  C ) `
 D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    C_ wss 3280   {csn 3774   <.cop 3777    _I cid 4453    |` cres 4839   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488   0gc0g 13678   Grpcgrp 14640   -gcsg 14643   Ringcrg 15615   1rcur 15617   LModclmod 15905   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   DVecHcdvh 31561   ocHcoch 31830  HVMapchvm 32239  HDMapchdma 32276  HGMapchg 32369
This theorem is referenced by:  hdmapglem5  32408  hgmapvvlem1  32409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-ot 3784  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mre 13766  df-mrc 13767  df-acs 13769  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-oppg 15097  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-lsatoms 29459  df-lshyp 29460  df-lcv 29502  df-lfl 29541  df-lkr 29569  df-ldual 29607  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tgrp 31225  df-tendo 31237  df-edring 31239  df-dveca 31485  df-disoa 31512  df-dvech 31562  df-dib 31622  df-dic 31656  df-dih 31712  df-doch 31831  df-djh 31878  df-lcdual 32070  df-mapd 32108  df-hvmap 32240  df-hdmap1 32277  df-hdmap 32278  df-hgmap 32370
  Copyright terms: Public domain W3C validator