Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6h Structured version   Unicode version

Theorem hdmap1l6h 34819
Description: Lemmma for hdmap1l6 34823. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
hdmap1l6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
hdmap1l6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
hdmap1l6h  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )

Proof of Theorem hdmap1l6h
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1l6.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmap1l6.p . . . 4  |-  .+  =  ( +g  `  U )
5 hdmap1l6.s . . . 4  |-  .-  =  ( -g `  U )
6 hdmap1l6c.o . . . 4  |-  .0.  =  ( 0g `  U )
7 hdmap1l6.n . . . 4  |-  N  =  ( LSpan `  U )
8 hdmap1l6.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
9 hdmap1l6.d . . . 4  |-  D  =  ( Base `  C
)
10 hdmap1l6.a . . . 4  |-  .+b  =  ( +g  `  C )
11 hdmap1l6.r . . . 4  |-  R  =  ( -g `  C
)
12 hdmap1l6.q . . . 4  |-  Q  =  ( 0g `  C
)
13 hdmap1l6.l . . . 4  |-  L  =  ( LSpan `  C )
14 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
15 hdmap1l6.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
16 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
17 hdmap1l6.f . . . 4  |-  ( ph  ->  F  e.  D )
18 hdmap1l6cl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 hdmap1l6.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
20 hdmap1l6d.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
21 hdmap1l6d.yz . . . 4  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
22 hdmap1l6d.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
23 hdmap1l6d.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
24 hdmap1l6d.w . . . 4  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
25 hdmap1l6d.wn . . . 4  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6g 34818 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
271, 8, 16lcdlmod 34593 . . . 4  |-  ( ph  ->  C  e.  LMod )
281, 2, 16dvhlvec 34110 . . . . . . . 8  |-  ( ph  ->  U  e.  LVec )
2924eldifad 3425 . . . . . . . 8  |-  ( ph  ->  w  e.  V )
3018eldifad 3425 . . . . . . . 8  |-  ( ph  ->  X  e.  V )
3122eldifad 3425 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
323, 7, 28, 29, 30, 31, 25lspindpi 17990 . . . . . . 7  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { Y } ) ) )
3332simpld 457 . . . . . 6  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  { X } ) )
3433necomd 2674 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { w } ) )
351, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 34, 18, 29hdmap1cl 34806 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  w >. )  e.  D )
3623eldifad 3425 . . . . . . 7  |-  ( ph  ->  Z  e.  V )
373, 7, 28, 30, 31, 36, 20lspindpi 17990 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
3837simpld 457 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
391, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 38, 18, 31hdmap1cl 34806 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
4037simprd 461 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
411, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 40, 18, 36hdmap1cl 34806 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
429, 10lmodass 17739 . . . 4  |-  ( ( C  e.  LMod  /\  (
( I `  <. X ,  F ,  w >. )  e.  D  /\  ( I `  <. X ,  F ,  Y >. )  e.  D  /\  ( I `  <. X ,  F ,  Z >. )  e.  D ) )  ->  ( (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  ( (
I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) ) )
4327, 35, 39, 41, 42syl13anc 1232 . . 3  |-  ( ph  ->  ( ( ( I `
 <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) ) )
4426, 43eqtrd 2443 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
453, 4, 6, 7, 28, 18, 22, 23, 24, 21, 38, 25mapdindp1 34721 . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
461, 2, 16dvhlmod 34111 . . . . 5  |-  ( ph  ->  U  e.  LMod )
473, 4lmodvacl 17738 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
4846, 31, 36, 47syl3anc 1230 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 45, 18, 48hdmap1cl 34806 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  e.  D
)
509, 10lmodvacl 17738 . . . 4  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  Y >. )  e.  D  /\  (
I `  <. X ,  F ,  Z >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5127, 39, 41, 50syl3anc 1230 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
529, 10lmodlcan 17740 . . 3  |-  ( ( C  e.  LMod  /\  (
( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  e.  D  /\  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D  /\  ( I `  <. X ,  F ,  w >. )  e.  D ) )  ->  ( (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) )  <->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
5327, 49, 51, 35, 52syl13anc 1232 . 2  |-  ( ph  ->  ( ( ( I `
 <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( I `  <. X ,  F ,  w >. ) 
.+b  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) )  <->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) )
5444, 53mpbid 210 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598    \ cdif 3410   {csn 3971   {cpr 3973   <.cotp 3979   ` cfv 5525  (class class class)co 6234   Basecbs 14733   +g cplusg 14801   0gc0g 14946   -gcsg 16271   LModclmod 17724   LSpanclspn 17829   HLchlt 32349   LHypclh 32982   DVecHcdvh 34079  LCDualclcd 34587  mapdcmpd 34625  HDMap1chdma1 34793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-riotaBAD 31958
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-ot 3980  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-of 6477  df-om 6639  df-1st 6738  df-2nd 6739  df-tpos 6912  df-undef 6959  df-recs 6999  df-rdg 7033  df-1o 7087  df-oadd 7091  df-er 7268  df-map 7379  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-nn 10497  df-2 10555  df-3 10556  df-4 10557  df-5 10558  df-6 10559  df-n0 10757  df-z 10826  df-uz 11046  df-fz 11644  df-struct 14735  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-mulr 14815  df-sca 14817  df-vsca 14818  df-0g 14948  df-mre 15092  df-mrc 15093  df-acs 15095  df-preset 15773  df-poset 15791  df-plt 15804  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-p0 15885  df-p1 15886  df-lat 15892  df-clat 15954  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-submnd 16183  df-grp 16273  df-minusg 16274  df-sbg 16275  df-subg 16414  df-cntz 16571  df-oppg 16597  df-lsm 16872  df-cmn 17016  df-abl 17017  df-mgp 17354  df-ur 17366  df-ring 17412  df-oppr 17484  df-dvdsr 17502  df-unit 17503  df-invr 17533  df-dvr 17544  df-drng 17610  df-lmod 17726  df-lss 17791  df-lsp 17830  df-lvec 17961  df-lsatoms 31975  df-lshyp 31976  df-lcv 32018  df-lfl 32057  df-lkr 32085  df-ldual 32123  df-oposet 32175  df-ol 32177  df-oml 32178  df-covers 32265  df-ats 32266  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-llines 32496  df-lplanes 32497  df-lvols 32498  df-lines 32499  df-psubsp 32501  df-pmap 32502  df-padd 32794  df-lhyp 32986  df-laut 32987  df-ldil 33102  df-ltrn 33103  df-trl 33158  df-tgrp 33743  df-tendo 33755  df-edring 33757  df-dveca 34003  df-disoa 34030  df-dvech 34080  df-dib 34140  df-dic 34174  df-dih 34230  df-doch 34349  df-djh 34396  df-lcdual 34588  df-mapd 34626  df-hdmap1 34795
This theorem is referenced by:  hdmap1l6i  34820
  Copyright terms: Public domain W3C validator