Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6a Structured version   Unicode version

Theorem hdmap1l6a 35737
Description: Lemma for hdmap1l6 35749. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h  |-  H  =  ( LHyp `  K
)
hdmap1l6.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1l6.v  |-  V  =  ( Base `  U
)
hdmap1l6.p  |-  .+  =  ( +g  `  U )
hdmap1l6.s  |-  .-  =  ( -g `  U )
hdmap1l6c.o  |-  .0.  =  ( 0g `  U )
hdmap1l6.n  |-  N  =  ( LSpan `  U )
hdmap1l6.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1l6.d  |-  D  =  ( Base `  C
)
hdmap1l6.a  |-  .+b  =  ( +g  `  C )
hdmap1l6.r  |-  R  =  ( -g `  C
)
hdmap1l6.q  |-  Q  =  ( 0g `  C
)
hdmap1l6.l  |-  L  =  ( LSpan `  C )
hdmap1l6.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1l6.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1l6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1l6.f  |-  ( ph  ->  F  e.  D )
hdmap1l6cl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1l6.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
hdmap1l6e.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
hdmap1l6e.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
hdmap1l6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
hdmap1l6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
hdmap1l6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
hdmap1l6a  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )

Proof of Theorem hdmap1l6a
StepHypRef Expression
1 hdmap1l6.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1l6.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1l6.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmap1l6.p . . . 4  |-  .+  =  ( +g  `  U )
5 hdmap1l6.s . . . 4  |-  .-  =  ( -g `  U )
6 hdmap1l6c.o . . . 4  |-  .0.  =  ( 0g `  U )
7 hdmap1l6.n . . . 4  |-  N  =  ( LSpan `  U )
8 hdmap1l6.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
9 hdmap1l6.d . . . 4  |-  D  =  ( Base `  C
)
10 hdmap1l6.a . . . 4  |-  .+b  =  ( +g  `  C )
11 hdmap1l6.r . . . 4  |-  R  =  ( -g `  C
)
12 hdmap1l6.q . . . 4  |-  Q  =  ( 0g `  C
)
13 hdmap1l6.l . . . 4  |-  L  =  ( LSpan `  C )
14 hdmap1l6.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
15 hdmap1l6.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
16 hdmap1l6.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
17 hdmap1l6.f . . . 4  |-  ( ph  ->  F  e.  D )
18 hdmap1l6cl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 hdmap1l6.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
20 hdmap1l6e.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
21 hdmap1l6e.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
22 hdmap1l6e.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
23 hdmap1l6.yz . . . 4  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
24 hdmap1l6.fg . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
25 hdmap1l6.fe . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem2 35736 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( L `  { ( G  .+b  E ) } ) )
2724, 25oveq12d 6194 . . . . 5  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( G 
.+b  E ) )
2827sneqd 3973 . . . 4  |-  ( ph  ->  { ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) }  =  {
( G  .+b  E
) } )
2928fveq2d 5779 . . 3  |-  ( ph  ->  ( L `  {
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) } )  =  ( L `  {
( G  .+b  E
) } ) )
3026, 29eqtr4d 2493 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( L `  { ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) } ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem1 35735 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
3227oveq2d 6192 . . . . 5  |-  ( ph  ->  ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )  =  ( F R ( G  .+b  E
) ) )
3332sneqd 3973 . . . 4  |-  ( ph  ->  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) }  =  { ( F R ( G  .+b  E
) ) } )
3433fveq2d 5779 . . 3  |-  ( ph  ->  ( L `  {
( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) ) } )  =  ( L `  { ( F R ( G 
.+b  E ) ) } ) )
3531, 34eqtr4d 2493 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) ) } ) )
361, 2, 16dvhlmod 35037 . . . . 5  |-  ( ph  ->  U  e.  LMod )
3720eldifad 3424 . . . . 5  |-  ( ph  ->  Y  e.  V )
3821eldifad 3424 . . . . 5  |-  ( ph  ->  Z  e.  V )
393, 4lmodvacl 17054 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
4036, 37, 38, 39syl3anc 1219 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
413, 4, 6, 7, 36, 37, 38, 23lmodindp1 17187 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =/=  .0.  )
42 eldifsn 4084 . . . 4  |-  ( ( Y  .+  Z )  e.  ( V  \  {  .0.  } )  <->  ( ( Y  .+  Z )  e.  V  /\  ( Y 
.+  Z )  =/= 
.0.  ) )
4340, 41, 42sylanbrc 664 . . 3  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( V 
\  {  .0.  }
) )
441, 8, 16lcdlmod 35519 . . . 4  |-  ( ph  ->  C  e.  LMod )
451, 2, 16dvhlvec 35036 . . . . . . 7  |-  ( ph  ->  U  e.  LVec )
4618eldifad 3424 . . . . . . 7  |-  ( ph  ->  X  e.  V )
473, 6, 7, 45, 37, 21, 46, 23, 22lspindp2 17308 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
4847simpld 459 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37hdmap1cl 35732 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
503, 6, 7, 45, 20, 38, 46, 23, 22lspindp1 17306 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5150simpld 459 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
521, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38hdmap1cl 35732 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
539, 10lmodvacl 17054 . . . 4  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  Y >. )  e.  D  /\  (
I `  <. X ,  F ,  Z >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5444, 49, 52, 53syl3anc 1219 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
55 eqid 2450 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
563, 55, 7, 36, 37, 38lspprcl 17151 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  U ) )
573, 4, 7, 36, 37, 38lspprvacl 17172 . . . . . 6  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( N `
 { Y ,  Z } ) )
5855, 7, 36, 56, 57lspsnel5a 17169 . . . . 5  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } ) )
593, 55, 7, 36, 56, 46lspsnel5 17168 . . . . . 6  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  ( N `  { X } ) 
C_  ( N `  { Y ,  Z }
) ) )
6022, 59mtbid 300 . . . . 5  |-  ( ph  ->  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )
61 nssne2 3497 . . . . 5  |-  ( ( ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } )  /\  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )  ->  ( N `  { ( Y  .+  Z ) } )  =/=  ( N `  { X } ) )
6258, 60, 61syl2anc 661 . . . 4  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =/=  ( N `  { X } ) )
6362necomd 2716 . . 3  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
641, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19hdmap1eq 35729 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) )  <->  ( ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( L `
 { ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) } )  /\  ( M `
 ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( L `  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) } ) ) ) )
6530, 35, 64mpbir2and 913 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1757    =/= wne 2641    \ cdif 3409    C_ wss 3412   {csn 3961   {cpr 3963   <.cotp 3969   ` cfv 5502  (class class class)co 6176   Basecbs 14262   +g cplusg 14326   0gc0g 14466   -gcsg 15501   LModclmod 17040   LSubSpclss 17105   LSpanclspn 17144   HLchlt 33277   LHypclh 33910   DVecHcdvh 35005  LCDualclcd 35513  mapdcmpd 35551  HDMap1chdma1 35719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-cnex 9425  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446  ax-riotaBAD 32886
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rmo 2800  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-ot 3970  df-uni 4176  df-int 4213  df-iun 4257  df-iin 4258  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-of 6406  df-om 6563  df-1st 6663  df-2nd 6664  df-tpos 6831  df-undef 6878  df-recs 6918  df-rdg 6952  df-1o 7006  df-oadd 7010  df-er 7187  df-map 7302  df-en 7397  df-dom 7398  df-sdom 7399  df-fin 7400  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-nn 10410  df-2 10467  df-3 10468  df-4 10469  df-5 10470  df-6 10471  df-n0 10667  df-z 10734  df-uz 10949  df-fz 11525  df-struct 14264  df-ndx 14265  df-slot 14266  df-base 14267  df-sets 14268  df-ress 14269  df-plusg 14339  df-mulr 14340  df-sca 14342  df-vsca 14343  df-0g 14468  df-mre 14612  df-mrc 14613  df-acs 14615  df-poset 15204  df-plt 15216  df-lub 15232  df-glb 15233  df-join 15234  df-meet 15235  df-p0 15297  df-p1 15298  df-lat 15304  df-clat 15366  df-mnd 15503  df-submnd 15553  df-grp 15633  df-minusg 15634  df-sbg 15635  df-subg 15766  df-cntz 15923  df-oppg 15949  df-lsm 16225  df-cmn 16369  df-abl 16370  df-mgp 16683  df-ur 16695  df-rng 16739  df-oppr 16807  df-dvdsr 16825  df-unit 16826  df-invr 16856  df-dvr 16867  df-drng 16926  df-lmod 17042  df-lss 17106  df-lsp 17145  df-lvec 17276  df-lsatoms 32903  df-lshyp 32904  df-lcv 32946  df-lfl 32985  df-lkr 33013  df-ldual 33051  df-oposet 33103  df-ol 33105  df-oml 33106  df-covers 33193  df-ats 33194  df-atl 33225  df-cvlat 33249  df-hlat 33278  df-llines 33424  df-lplanes 33425  df-lvols 33426  df-lines 33427  df-psubsp 33429  df-pmap 33430  df-padd 33722  df-lhyp 33914  df-laut 33915  df-ldil 34030  df-ltrn 34031  df-trl 34085  df-tgrp 34669  df-tendo 34681  df-edring 34683  df-dveca 34929  df-disoa 34956  df-dvech 35006  df-dib 35066  df-dic 35100  df-dih 35156  df-doch 35275  df-djh 35322  df-lcdual 35514  df-mapd 35552  df-hdmap1 35721
This theorem is referenced by:  hdmap1l6d  35741  hdmap1l6e  35742  hdmap1l6f  35743  hdmap1l6j  35747
  Copyright terms: Public domain W3C validator