Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1fval Structured version   Unicode version

Theorem hdmap1fval 37646
Description: Preliminary map from vectors to functionals in the closed kernel dual space. TODO: change span  J to the convention  L for this section. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h  |-  H  =  ( LHyp `  K
)
hdmap1fval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1fval.v  |-  V  =  ( Base `  U
)
hdmap1fval.s  |-  .-  =  ( -g `  U )
hdmap1fval.o  |-  .0.  =  ( 0g `  U )
hdmap1fval.n  |-  N  =  ( LSpan `  U )
hdmap1fval.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1fval.d  |-  D  =  ( Base `  C
)
hdmap1fval.r  |-  R  =  ( -g `  C
)
hdmap1fval.q  |-  Q  =  ( 0g `  C
)
hdmap1fval.j  |-  J  =  ( LSpan `  C )
hdmap1fval.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1fval.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1fval.k  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
Assertion
Ref Expression
hdmap1fval  |-  ( ph  ->  I  =  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
Distinct variable groups:    x, h, C    D, h, x    h, J, x    h, M, x   
h, N, x    U, h, x    h, V, x
Allowed substitution hints:    ph( x, h)    A( x, h)    Q( x, h)    R( x, h)    H( x, h)    I( x, h)    K( x, h)    .- ( x, h)    W( x, h)    .0. ( x, h)

Proof of Theorem hdmap1fval
Dummy variables  w  a  c  d  j  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1fval.k . 2  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
2 hdmap1fval.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
3 hdmap1val.h . . . . . 6  |-  H  =  ( LHyp `  K
)
43hdmap1ffval 37645 . . . . 5  |-  ( K  e.  A  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
54fveq1d 5874 . . . 4  |-  ( K  e.  A  ->  (
(HDMap1 `  K ) `  W )  =  ( ( w  e.  H  |->  { a  |  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) `  W
) )
62, 5syl5eq 2510 . . 3  |-  ( K  e.  A  ->  I  =  ( ( w  e.  H  |->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) `  W
) )
7 fveq2 5872 . . . . . . 7  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
8 fveq2 5872 . . . . . . . . . 10  |-  ( w  =  W  ->  (
(LCDual `  K ) `  w )  =  ( (LCDual `  K ) `  W ) )
9 fveq2 5872 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  (
(mapd `  K ) `  w )  =  ( (mapd `  K ) `  W ) )
109sbceq1d 3332 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( [. ( (mapd `  K
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (mapd `  K
) `  W )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1110sbcbidv 3386 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1211sbcbidv 3386 . . . . . . . . . 10  |-  ( w  =  W  ->  ( [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
138, 12sbceqbid 3334 . . . . . . . . 9  |-  ( w  =  W  ->  ( [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  W )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  W
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1413sbcbidv 3386 . . . . . . . 8  |-  ( w  =  W  ->  ( [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  W )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1514sbcbidv 3386 . . . . . . 7  |-  ( w  =  W  ->  ( [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  W )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
167, 15sbceqbid 3334 . . . . . 6  |-  ( w  =  W  ->  ( [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  W )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  W
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
17 fvex 5882 . . . . . . 7  |-  ( (
DVecH `  K ) `  W )  e.  _V
18 fvex 5882 . . . . . . 7  |-  ( Base `  u )  e.  _V
19 fvex 5882 . . . . . . 7  |-  ( LSpan `  u )  e.  _V
20 hdmap1fval.u . . . . . . . . . . 11  |-  U  =  ( ( DVecH `  K
) `  W )
2120eqeq2i 2475 . . . . . . . . . 10  |-  ( u  =  U  <->  u  =  ( ( DVecH `  K
) `  W )
)
2221biimpri 206 . . . . . . . . 9  |-  ( u  =  ( ( DVecH `  K ) `  W
)  ->  u  =  U )
23223ad2ant1 1017 . . . . . . . 8  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  u  =  U )
24 simp2 997 . . . . . . . . . 10  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  v  =  ( Base `  u )
)
2522fveq2d 5876 . . . . . . . . . . 11  |-  ( u  =  ( ( DVecH `  K ) `  W
)  ->  ( Base `  u )  =  (
Base `  U )
)
26253ad2ant1 1017 . . . . . . . . . 10  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  ( Base `  u )  =  (
Base `  U )
)
2724, 26eqtrd 2498 . . . . . . . . 9  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  v  =  ( Base `  U )
)
28 hdmap1fval.v . . . . . . . . 9  |-  V  =  ( Base `  U
)
2927, 28syl6eqr 2516 . . . . . . . 8  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  v  =  V )
30 simp3 998 . . . . . . . . . 10  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  n  =  ( LSpan `  u )
)
3123fveq2d 5876 . . . . . . . . . 10  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  ( LSpan `  u )  =  (
LSpan `  U ) )
3230, 31eqtrd 2498 . . . . . . . . 9  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  n  =  ( LSpan `  U )
)
33 hdmap1fval.n . . . . . . . . 9  |-  N  =  ( LSpan `  U )
3432, 33syl6eqr 2516 . . . . . . . 8  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  n  =  N )
35 fvex 5882 . . . . . . . . . 10  |-  ( (LCDual `  K ) `  W
)  e.  _V
36 fvex 5882 . . . . . . . . . 10  |-  ( Base `  c )  e.  _V
37 fvex 5882 . . . . . . . . . 10  |-  ( LSpan `  c )  e.  _V
38 id 22 . . . . . . . . . . . . 13  |-  ( c  =  ( (LCDual `  K ) `  W
)  ->  c  =  ( (LCDual `  K ) `  W ) )
39 hdmap1fval.c . . . . . . . . . . . . 13  |-  C  =  ( (LCDual `  K
) `  W )
4038, 39syl6eqr 2516 . . . . . . . . . . . 12  |-  ( c  =  ( (LCDual `  K ) `  W
)  ->  c  =  C )
41403ad2ant1 1017 . . . . . . . . . . 11  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  c  =  C )
42 simp2 997 . . . . . . . . . . . 12  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  d  =  (
Base `  c )
)
4341fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  ( Base `  c
)  =  ( Base `  C ) )
44 hdmap1fval.d . . . . . . . . . . . . 13  |-  D  =  ( Base `  C
)
4543, 44syl6eqr 2516 . . . . . . . . . . . 12  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  ( Base `  c
)  =  D )
4642, 45eqtrd 2498 . . . . . . . . . . 11  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  d  =  D )
47 simp3 998 . . . . . . . . . . . 12  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  j  =  (
LSpan `  c ) )
4841fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  ( LSpan `  c
)  =  ( LSpan `  C ) )
49 hdmap1fval.j . . . . . . . . . . . . 13  |-  J  =  ( LSpan `  C )
5048, 49syl6eqr 2516 . . . . . . . . . . . 12  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  ( LSpan `  c
)  =  J )
5147, 50eqtrd 2498 . . . . . . . . . . 11  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  j  =  J )
52 fvex 5882 . . . . . . . . . . . . 13  |-  ( (mapd `  K ) `  W
)  e.  _V
53 id 22 . . . . . . . . . . . . . . 15  |-  ( m  =  ( (mapd `  K ) `  W
)  ->  m  =  ( (mapd `  K ) `  W ) )
54 hdmap1fval.m . . . . . . . . . . . . . . 15  |-  M  =  ( (mapd `  K
) `  W )
5553, 54syl6eqr 2516 . . . . . . . . . . . . . 14  |-  ( m  =  ( (mapd `  K ) `  W
)  ->  m  =  M )
56 fveq1 5871 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  M  ->  (
m `  ( n `  { ( 2nd `  x
) } ) )  =  ( M `  ( n `  {
( 2nd `  x
) } ) ) )
5756eqeq1d 2459 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  M  ->  (
( m `  (
n `  { ( 2nd `  x ) } ) )  =  ( j `  { h } )  <->  ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } ) ) )
58 fveq1 5871 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  M  ->  (
m `  ( n `  { ( ( 1st `  ( 1st `  x
) ) ( -g `  u ) ( 2nd `  x ) ) } ) )  =  ( M `  ( n `
 { ( ( 1st `  ( 1st `  x ) ) (
-g `  u )
( 2nd `  x
) ) } ) ) )
5958eqeq1d 2459 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  M  ->  (
( m `  (
n `  { (
( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } )  <-> 
( M `  (
n `  { (
( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) )
6057, 59anbi12d 710 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  M  ->  (
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) )  <->  ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) )
6160riotabidv 6260 . . . . . . . . . . . . . . . . 17  |-  ( m  =  M  ->  ( iota_ h  e.  d  ( ( m `  (
n `  { ( 2nd `  x ) } ) )  =  ( j `  { h } )  /\  (
m `  ( n `  { ( ( 1st `  ( 1st `  x
) ) ( -g `  u ) ( 2nd `  x ) ) } ) )  =  ( j `  { ( ( 2nd `  ( 1st `  x ) ) ( -g `  c
) h ) } ) ) )  =  ( iota_ h  e.  d  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) )
6261ifeq2d 3963 . . . . . . . . . . . . . . . 16  |-  ( m  =  M  ->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) )  =  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )
6362mpteq2dv 4544 . . . . . . . . . . . . . . 15  |-  ( m  =  M  ->  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  =  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) )
6463eleq2d 2527 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
a  e.  ( x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
6555, 64syl 16 . . . . . . . . . . . . 13  |-  ( m  =  ( (mapd `  K ) `  W
)  ->  ( a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
6652, 65sbcie 3362 . . . . . . . . . . . 12  |-  ( [. ( (mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) )
67 simp2 997 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  d  =  D )
68 xpeq2 5023 . . . . . . . . . . . . . . . 16  |-  ( d  =  D  ->  (
v  X.  d )  =  ( v  X.  D ) )
6968xpeq1d 5031 . . . . . . . . . . . . . . 15  |-  ( d  =  D  ->  (
( v  X.  d
)  X.  v )  =  ( ( v  X.  D )  X.  v ) )
7067, 69syl 16 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( ( v  X.  d )  X.  v
)  =  ( ( v  X.  D )  X.  v ) )
71 simp1 996 . . . . . . . . . . . . . . . . 17  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  c  =  C )
7271fveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( 0g `  c
)  =  ( 0g
`  C ) )
73 hdmap1fval.q . . . . . . . . . . . . . . . 16  |-  Q  =  ( 0g `  C
)
7472, 73syl6eqr 2516 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( 0g `  c
)  =  Q )
75 simp3 998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  j  =  J )
7675fveq1d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( j `  {
h } )  =  ( J `  {
h } ) )
7776eqeq2d 2471 . . . . . . . . . . . . . . . . 17  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  <-> 
( M `  (
n `  { ( 2nd `  x ) } ) )  =  ( J `  { h } ) ) )
7871fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( -g `  c
)  =  ( -g `  C ) )
79 hdmap1fval.r . . . . . . . . . . . . . . . . . . . . . 22  |-  R  =  ( -g `  C
)
8078, 79syl6eqr 2516 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( -g `  c
)  =  R )
8180oveqd 6313 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( ( 2nd `  ( 1st `  x ) ) ( -g `  c
) h )  =  ( ( 2nd `  ( 1st `  x ) ) R h ) )
8281sneqd 4044 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  { ( ( 2nd `  ( 1st `  x
) ) ( -g `  c ) h ) }  =  { ( ( 2nd `  ( 1st `  x ) ) R h ) } )
8375, 82fveq12d 5878 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( j `  {
( ( 2nd `  ( 1st `  x ) ) ( -g `  c
) h ) } )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) )
8483eqeq2d 2471 . . . . . . . . . . . . . . . . 17  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } )  <-> 
( M `  (
n `  { (
( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) )
8577, 84anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) )  <->  ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) )
8667, 85riotaeqbidv 6261 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( iota_ h  e.  d  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) )  =  (
iota_ h  e.  D  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) )
8774, 86ifeq12d 3964 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) )  =  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  Q ,  (
iota_ h  e.  D  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
8870, 87mpteq12dv 4535 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  =  ( x  e.  ( ( v  X.  D )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
8988eleq2d 2527 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( a  e.  ( x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  D )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
9066, 89syl5bb 257 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D  /\  j  =  J )  ->  ( [. ( (mapd `  K ) `  W
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  D )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
9141, 46, 51, 90syl3anc 1228 . . . . . . . . . 10  |-  ( ( c  =  ( (LCDual `  K ) `  W
)  /\  d  =  ( Base `  c )  /\  j  =  ( LSpan `  c ) )  ->  ( [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  D )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
9235, 36, 37, 91sbc3ie 3403 . . . . . . . . 9  |-  ( [. ( (LCDual `  K ) `  W )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( v  X.  D )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
93 simp2 997 . . . . . . . . . . . . 13  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  v  =  V )
9493xpeq1d 5031 . . . . . . . . . . . 12  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( v  X.  D
)  =  ( V  X.  D ) )
9594, 93xpeq12d 5033 . . . . . . . . . . 11  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( v  X.  D )  X.  v
)  =  ( ( V  X.  D )  X.  V ) )
96 simp1 996 . . . . . . . . . . . . . . 15  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  u  =  U )
9796fveq2d 5876 . . . . . . . . . . . . . 14  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( 0g `  u
)  =  ( 0g
`  U ) )
98 hdmap1fval.o . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  U )
9997, 98syl6eqr 2516 . . . . . . . . . . . . 13  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( 0g `  u
)  =  .0.  )
10099eqeq2d 2471 . . . . . . . . . . . 12  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( 2nd `  x
)  =  ( 0g
`  u )  <->  ( 2nd `  x )  =  .0.  ) )
101 simp3 998 . . . . . . . . . . . . . . . . 17  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  n  =  N )
102101fveq1d 5874 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( n `  {
( 2nd `  x
) } )  =  ( N `  {
( 2nd `  x
) } ) )
103102fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( M `  (
n `  { ( 2nd `  x ) } ) )  =  ( M `  ( N `
 { ( 2nd `  x ) } ) ) )
104103eqeq1d 2459 . . . . . . . . . . . . . 14  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  <-> 
( M `  ( N `  { ( 2nd `  x ) } ) )  =  ( J `  { h } ) ) )
10596fveq2d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( -g `  u
)  =  ( -g `  U ) )
106 hdmap1fval.s . . . . . . . . . . . . . . . . . . . 20  |-  .-  =  ( -g `  U )
107105, 106syl6eqr 2516 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( -g `  u
)  =  .-  )
108107oveqd 6313 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) )  =  ( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) )
109108sneqd 4044 . . . . . . . . . . . . . . . . 17  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  { ( ( 1st `  ( 1st `  x
) ) ( -g `  u ) ( 2nd `  x ) ) }  =  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) } )
110101, 109fveq12d 5878 . . . . . . . . . . . . . . . 16  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } )  =  ( N `  { ( ( 1st `  ( 1st `  x
) )  .-  ( 2nd `  x ) ) } ) )
111110fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( M `  (
n `  { (
( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( M `
 ( N `  { ( ( 1st `  ( 1st `  x
) )  .-  ( 2nd `  x ) ) } ) ) )
112111eqeq1d 2459 . . . . . . . . . . . . . 14  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } )  <-> 
( M `  ( N `  { (
( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) )
113104, 112anbi12d 710 . . . . . . . . . . . . 13  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( ( ( M `
 ( n `  { ( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) )  <->  ( ( M `
 ( N `  { ( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) )
114113riotabidv 6260 . . . . . . . . . . . 12  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( iota_ h  e.  D  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) )  =  (
iota_ h  e.  D  ( ( M `  ( N `  { ( 2nd `  x ) } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) } ) )  =  ( J `  { ( ( 2nd `  ( 1st `  x
) ) R h ) } ) ) ) )
115100, 114ifbieq2d 3969 . . . . . . . . . . 11  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  Q ,  (
iota_ h  e.  D  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) )  =  if ( ( 2nd `  x )  =  .0. 
,  Q ,  (
iota_ h  e.  D  ( ( M `  ( N `  { ( 2nd `  x ) } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) } ) )  =  ( J `  { ( ( 2nd `  ( 1st `  x
) ) R h ) } ) ) ) ) )
11695, 115mpteq12dv 4535 . . . . . . . . . 10  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( x  e.  ( ( v  X.  D
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  Q ,  (
iota_ h  e.  D  ( ( M `  ( n `  {
( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )  =  ( x  e.  ( ( V  X.  D )  X.  V
)  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `
 ( N `  { ( 2nd `  x
) } ) )  =  ( J `  { h } )  /\  ( M `  ( N `  { ( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
117116eleq2d 2527 . . . . . . . . 9  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( a  e.  ( x  e.  ( ( v  X.  D )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( n `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
11892, 117syl5bb 257 . . . . . . . 8  |-  ( ( u  =  U  /\  v  =  V  /\  n  =  N )  ->  ( [. ( (LCDual `  K ) `  W
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
11923, 29, 34, 118syl3anc 1228 . . . . . . 7  |-  ( ( u  =  ( (
DVecH `  K ) `  W )  /\  v  =  ( Base `  u
)  /\  n  =  ( LSpan `  u )
)  ->  ( [. ( (LCDual `  K ) `  W )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
12017, 18, 19, 119sbc3ie 3403 . . . . . 6  |-  ( [. ( ( DVecH `  K
) `  W )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  W
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  W )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
12116, 120syl6bb 261 . . . . 5  |-  ( w  =  W  ->  ( [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <-> 
a  e.  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) ) )
122121abbi1dv 2595 . . . 4  |-  ( w  =  W  ->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) }  =  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
123 eqid 2457 . . . 4  |-  ( w  e.  H  |->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )
124 fvex 5882 . . . . . . . 8  |-  ( Base `  U )  e.  _V
12528, 124eqeltri 2541 . . . . . . 7  |-  V  e. 
_V
126 fvex 5882 . . . . . . . 8  |-  ( Base `  C )  e.  _V
12744, 126eqeltri 2541 . . . . . . 7  |-  D  e. 
_V
128125, 127xpex 6603 . . . . . 6  |-  ( V  X.  D )  e. 
_V
129128, 125xpex 6603 . . . . 5  |-  ( ( V  X.  D )  X.  V )  e. 
_V
130129mptex 6144 . . . 4  |-  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )  e.  _V
131122, 123, 130fvmpt 5956 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { a  |  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) `  W
)  =  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
1326, 131sylan9eq 2518 . 2  |-  ( ( K  e.  A  /\  W  e.  H )  ->  I  =  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
1331, 132syl 16 1  |-  ( ph  ->  I  =  ( x  e.  ( ( V  X.  D )  X.  V )  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   {cab 2442   _Vcvv 3109   [.wsbc 3327   ifcif 3944   {csn 4032    |-> cmpt 4515    X. cxp 5006   ` cfv 5594   iota_crio 6257  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   Basecbs 14644   0gc0g 14857   -gcsg 16182   LSpanclspn 17744   LHypclh 35830   DVecHcdvh 36927  LCDualclcd 37435  mapdcmpd 37473  HDMap1chdma1 37641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-hdmap1 37643
This theorem is referenced by:  hdmap1vallem  37647
  Copyright terms: Public domain W3C validator