Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1ffval Structured version   Visualization version   Unicode version

Theorem hdmap1ffval 35376
Description: Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.)
Hypothesis
Ref Expression
hdmap1val.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hdmap1ffval  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Distinct variable groups:    w, H    a, c, d, j, m, n, u, v, w, K    h, a, x, c, d, j, m, n, u, v, w
Allowed substitution hints:    H( x, v, u, h, j, m, n, a, c, d)    K( x, h)    X( x, w, v, u, h, j, m, n, a, c, d)

Proof of Theorem hdmap1ffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3056 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5870 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hdmap1val.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2505 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5870 . . . . . . 7  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5872 . . . . . 6  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
7 fveq2 5870 . . . . . . . . . 10  |-  ( k  =  K  ->  (LCDual `  k )  =  (LCDual `  K ) )
87fveq1d 5872 . . . . . . . . 9  |-  ( k  =  K  ->  (
(LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w ) )
9 fveq2 5870 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  (mapd `  k )  =  (mapd `  K ) )
109fveq1d 5872 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
(mapd `  k ) `  w )  =  ( (mapd `  K ) `  w ) )
1110sbceq1d 3274 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( [. ( (mapd `  k
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (mapd `  K
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1211sbcbidv 3324 . . . . . . . . . 10  |-  ( k  =  K  ->  ( [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1312sbcbidv 3324 . . . . . . . . 9  |-  ( k  =  K  ->  ( [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
148, 13sbceqbid 3276 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( (LCDual `  k
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1514sbcbidv 3324 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1615sbcbidv 3324 . . . . . 6  |-  ( k  =  K  ->  ( [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
176, 16sbceqbid 3276 . . . . 5  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1817abbidv 2571 . . . 4  |-  ( k  =  K  ->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) }  =  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )
194, 18mpteq12dv 4484 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
20 df-hdmap1 35374 . . 3  |- HDMap1  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
21 fvex 5880 . . . . 5  |-  ( LHyp `  K )  e.  _V
223, 21eqeltri 2527 . . . 4  |-  H  e. 
_V
2322mptex 6141 . . 3  |-  ( w  e.  H  |->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  e.  _V
2419, 20, 23fvmpt 5953 . 2  |-  ( K  e.  _V  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
251, 24syl 17 1  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   {cab 2439   _Vcvv 3047   [.wsbc 3269   ifcif 3883   {csn 3970    |-> cmpt 4464    X. cxp 4835   ` cfv 5585   iota_crio 6256  (class class class)co 6295   1stc1st 6796   2ndc2nd 6797   Basecbs 15133   0gc0g 15350   -gcsg 16683   LSpanclspn 18206   LHypclh 33561   DVecHcdvh 34658  LCDualclcd 35166  mapdcmpd 35204  HDMap1chdma1 35372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-hdmap1 35374
This theorem is referenced by:  hdmap1fval  35377
  Copyright terms: Public domain W3C validator