Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1ffval Structured version   Unicode version

Theorem hdmap1ffval 35129
Description: Preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 14-May-2015.)
Hypothesis
Ref Expression
hdmap1val.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
hdmap1ffval  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Distinct variable groups:    w, H    a, c, d, j, m, n, u, v, w, K    h, a, x, c, d, j, m, n, u, v, w
Allowed substitution hints:    H( x, v, u, h, j, m, n, a, c, d)    K( x, h)    X( x, w, v, u, h, j, m, n, a, c, d)

Proof of Theorem hdmap1ffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2979 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5688 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 hdmap1val.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2491 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5688 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5690 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
7 dfsbcq 3185 . . . . . . 7  |-  ( ( ( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w )  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
86, 7syl 16 . . . . . 6  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
9 fveq2 5688 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (LCDual `  k )  =  (LCDual `  K ) )
109fveq1d 5690 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
(LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w ) )
11 dfsbcq 3185 . . . . . . . . . . 11  |-  ( ( (LCDual `  k ) `  w )  =  ( (LCDual `  K ) `  w )  ->  ( [. ( (LCDual `  k
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1210, 11syl 16 . . . . . . . . . 10  |-  ( k  =  K  ->  ( [. ( (LCDual `  k
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
13 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( k  =  K  ->  (mapd `  k )  =  (mapd `  K ) )
1413fveq1d 5690 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  (
(mapd `  k ) `  w )  =  ( (mapd `  K ) `  w ) )
15 dfsbcq 3185 . . . . . . . . . . . . . 14  |-  ( ( (mapd `  k ) `  w )  =  ( (mapd `  K ) `  w )  ->  ( [. ( (mapd `  k
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (mapd `  K
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1614, 15syl 16 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( [. ( (mapd `  k
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (mapd `  K
) `  w )  /  m ]. a  e.  ( x  e.  ( ( v  X.  d
)  X.  v ) 
|->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  (
iota_ h  e.  d 
( ( m `  ( n `  {
( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1716sbcbidv 3242 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1817sbcbidv 3242 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
1918sbcbidv 3242 . . . . . . . . . 10  |-  ( k  =  K  ->  ( [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
2012, 19bitrd 253 . . . . . . . . 9  |-  ( k  =  K  ->  ( [. ( (LCDual `  k
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  k ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( (LCDual `  K
) `  w )  /  c ]. [. ( Base `  c )  / 
d ]. [. ( LSpan `  c )  /  j ]. [. ( (mapd `  K ) `  w
)  /  m ]. a  e.  ( x  e.  ( ( v  X.  d )  X.  v
)  |->  if ( ( 2nd `  x )  =  ( 0g `  u ) ,  ( 0g `  c ) ,  ( iota_ h  e.  d  ( ( m `
 ( n `  { ( 2nd `  x
) } ) )  =  ( j `  { h } )  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
2120sbcbidv 3242 . . . . . . . 8  |-  ( k  =  K  ->  ( [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
2221sbcbidv 3242 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
2322sbcbidv 3242 . . . . . 6  |-  ( k  =  K  ->  ( [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
248, 23bitrd 253 . . . . 5  |-  ( k  =  K  ->  ( [. ( ( DVecH `  k
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  k ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) )  <->  [. ( ( DVecH `  K
) `  w )  /  u ]. [. ( Base `  u )  / 
v ]. [. ( LSpan `  u )  /  n ]. [. ( (LCDual `  K ) `  w
)  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) ) )
2524abbidv 2555 . . . 4  |-  ( k  =  K  ->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) }  =  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )
264, 25mpteq12dv 4367 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
27 df-hdmap1 35127 . . 3  |- HDMap1  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { a  |  [. ( (
DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
28 fvex 5698 . . . . 5  |-  ( LHyp `  K )  e.  _V
293, 28eqeltri 2511 . . . 4  |-  H  e. 
_V
3029mptex 5945 . . 3  |-  ( w  e.  H  |->  { a  |  [. ( (
DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } )  e.  _V
3126, 27, 30fvmpt 5771 . 2  |-  ( K  e.  _V  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
321, 31syl 16 1  |-  ( K  e.  X  ->  (HDMap1 `  K )  =  ( w  e.  H  |->  { a  |  [. (
( DVecH `  K ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  K ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  K ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427   _Vcvv 2970   [.wsbc 3183   ifcif 3788   {csn 3874    e. cmpt 4347    X. cxp 4834   ` cfv 5415   iota_crio 6048  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   Basecbs 14170   0gc0g 14374   -gcsg 15409   LSpanclspn 17030   LHypclh 33316   DVecHcdvh 34411  LCDualclcd 34919  mapdcmpd 34957  HDMap1chdma1 35125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-hdmap1 35127
This theorem is referenced by:  hdmap1fval  35130
  Copyright terms: Public domain W3C validator