Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eq Structured version   Unicode version

Theorem hdmap1eq 35339
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h  |-  H  =  ( LHyp `  K
)
hdmap1val2.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1val2.v  |-  V  =  ( Base `  U
)
hdmap1val2.s  |-  .-  =  ( -g `  U )
hdmap1val2.o  |-  .0.  =  ( 0g `  U )
hdmap1val2.n  |-  N  =  ( LSpan `  U )
hdmap1val2.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1val2.d  |-  D  =  ( Base `  C
)
hdmap1val2.r  |-  R  =  ( -g `  C
)
hdmap1val2.l  |-  L  =  ( LSpan `  C )
hdmap1val2.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1val2.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1val2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1eq.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.f  |-  ( ph  ->  F  e.  D )
hdmap1eq.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.g  |-  ( ph  ->  G  e.  D )
hdmap1eq.e  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
hdmap1eq.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
Assertion
Ref Expression
hdmap1eq  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )

Proof of Theorem hdmap1eq
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 hdmap1val2.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1val2.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1val2.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmap1val2.s . . . 4  |-  .-  =  ( -g `  U )
5 hdmap1val2.o . . . 4  |-  .0.  =  ( 0g `  U )
6 hdmap1val2.n . . . 4  |-  N  =  ( LSpan `  U )
7 hdmap1val2.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmap1val2.d . . . 4  |-  D  =  ( Base `  C
)
9 hdmap1val2.r . . . 4  |-  R  =  ( -g `  C
)
10 hdmap1val2.l . . . 4  |-  L  =  ( LSpan `  C )
11 hdmap1val2.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
12 hdmap1val2.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
13 hdmap1val2.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14 hdmap1eq.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
1514eldifad 3448 . . . 4  |-  ( ph  ->  X  e.  V )
16 hdmap1eq.f . . . 4  |-  ( ph  ->  F  e.  D )
17 hdmap1eq.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17hdmap1val2 35338 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) ) )
1918eqeq1d 2424 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( iota_ h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )  =  G ) )
20 hdmap1eq.e . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
21 hdmap1eq.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
221, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 16, 20, 21mapdpg 35243 . . 3  |-  ( ph  ->  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )
23 nfv 1755 . . . 4  |-  F/ h ph
24 nfcvd 2581 . . . 4  |-  ( ph  -> 
F/_ h G )
25 nfvd 1756 . . . 4  |-  ( ph  ->  F/ h ( ( M `  ( N `
 { Y }
) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
26 hdmap1eq.g . . . 4  |-  ( ph  ->  G  e.  D )
27 sneq 4008 . . . . . . . 8  |-  ( h  =  G  ->  { h }  =  { G } )
2827fveq2d 5885 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { h } )  =  ( L `  { G } ) )
2928eqeq2d 2436 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  <->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) ) )
30 oveq2 6313 . . . . . . . . 9  |-  ( h  =  G  ->  ( F R h )  =  ( F R G ) )
3130sneqd 4010 . . . . . . . 8  |-  ( h  =  G  ->  { ( F R h ) }  =  { ( F R G ) } )
3231fveq2d 5885 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { ( F R h ) } )  =  ( L `
 { ( F R G ) } ) )
3332eqeq2d 2436 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R h ) } )  <->  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) )
3429, 33anbi12d 715 . . . . 5  |-  ( h  =  G  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3534adantl 467 . . . 4  |-  ( (
ph  /\  h  =  G )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3623, 24, 25, 26, 35riota2df 6287 . . 3  |-  ( (
ph  /\  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { h }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R h ) } ) ) )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) )  <->  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3722, 36mpdan 672 . 2  |-  ( ph  ->  ( ( ( M `
 ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )  <->  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3819, 37bitr4d 259 1  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614   E!wreu 2773    \ cdif 3433   {csn 3998   <.cotp 4006   ` cfv 5601   iota_crio 6266  (class class class)co 6305   Basecbs 15120   0gc0g 15337   -gcsg 16670   LSpanclspn 18193   HLchlt 32885   LHypclh 33518   DVecHcdvh 34615  LCDualclcd 35123  mapdcmpd 35161  HDMap1chdma1 35329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-ot 4007  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6984  df-undef 7031  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-sca 15205  df-vsca 15206  df-0g 15339  df-mre 15491  df-mrc 15492  df-acs 15494  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-submnd 16582  df-grp 16672  df-minusg 16673  df-sbg 16674  df-subg 16813  df-cntz 16970  df-oppg 16996  df-lsm 17287  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-ring 17781  df-oppr 17850  df-dvdsr 17868  df-unit 17869  df-invr 17899  df-dvr 17910  df-drng 17976  df-lmod 18092  df-lss 18155  df-lsp 18194  df-lvec 18325  df-lsatoms 32511  df-lshyp 32512  df-lcv 32554  df-lfl 32593  df-lkr 32621  df-ldual 32659  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-lplanes 33033  df-lvols 33034  df-lines 33035  df-psubsp 33037  df-pmap 33038  df-padd 33330  df-lhyp 33522  df-laut 33523  df-ldil 33638  df-ltrn 33639  df-trl 33694  df-tgrp 34279  df-tendo 34291  df-edring 34293  df-dveca 34539  df-disoa 34566  df-dvech 34616  df-dib 34676  df-dic 34710  df-dih 34766  df-doch 34885  df-djh 34932  df-lcdual 35124  df-mapd 35162  df-hdmap1 35331
This theorem is referenced by:  hdmap1l6lem1  35345  hdmap1l6lem2  35346  hdmap1l6a  35347  hdmap1neglem1N  35365  hdmapval3lemN  35377  hdmap10lem  35379  hdmap11lem1  35381
  Copyright terms: Public domain W3C validator