Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eq Structured version   Unicode version

Theorem hdmap1eq 37231
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.)
Hypotheses
Ref Expression
hdmap1val2.h  |-  H  =  ( LHyp `  K
)
hdmap1val2.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1val2.v  |-  V  =  ( Base `  U
)
hdmap1val2.s  |-  .-  =  ( -g `  U )
hdmap1val2.o  |-  .0.  =  ( 0g `  U )
hdmap1val2.n  |-  N  =  ( LSpan `  U )
hdmap1val2.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1val2.d  |-  D  =  ( Base `  C
)
hdmap1val2.r  |-  R  =  ( -g `  C
)
hdmap1val2.l  |-  L  =  ( LSpan `  C )
hdmap1val2.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1val2.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1val2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1eq.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.f  |-  ( ph  ->  F  e.  D )
hdmap1eq.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
hdmap1eq.g  |-  ( ph  ->  G  e.  D )
hdmap1eq.e  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
hdmap1eq.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
Assertion
Ref Expression
hdmap1eq  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )

Proof of Theorem hdmap1eq
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 hdmap1val2.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hdmap1val2.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1val2.v . . . 4  |-  V  =  ( Base `  U
)
4 hdmap1val2.s . . . 4  |-  .-  =  ( -g `  U )
5 hdmap1val2.o . . . 4  |-  .0.  =  ( 0g `  U )
6 hdmap1val2.n . . . 4  |-  N  =  ( LSpan `  U )
7 hdmap1val2.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmap1val2.d . . . 4  |-  D  =  ( Base `  C
)
9 hdmap1val2.r . . . 4  |-  R  =  ( -g `  C
)
10 hdmap1val2.l . . . 4  |-  L  =  ( LSpan `  C )
11 hdmap1val2.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
12 hdmap1val2.i . . . 4  |-  I  =  ( (HDMap1 `  K
) `  W )
13 hdmap1val2.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14 hdmap1eq.x . . . . 5  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
1514eldifad 3470 . . . 4  |-  ( ph  ->  X  e.  V )
16 hdmap1eq.f . . . 4  |-  ( ph  ->  F  e.  D )
17 hdmap1eq.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17hdmap1val2 37230 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) ) )
1918eqeq1d 2443 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( iota_ h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )  =  G ) )
20 hdmap1eq.e . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
21 hdmap1eq.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( L `  { F } ) )
221, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 16, 20, 21mapdpg 37135 . . 3  |-  ( ph  ->  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) ) )
23 nfv 1692 . . . 4  |-  F/ h ph
24 nfcvd 2604 . . . 4  |-  ( ph  -> 
F/_ h G )
25 nfvd 1693 . . . 4  |-  ( ph  ->  F/ h ( ( M `  ( N `
 { Y }
) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) )
26 hdmap1eq.g . . . 4  |-  ( ph  ->  G  e.  D )
27 sneq 4020 . . . . . . . 8  |-  ( h  =  G  ->  { h }  =  { G } )
2827fveq2d 5856 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { h } )  =  ( L `  { G } ) )
2928eqeq2d 2455 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  <->  ( M `  ( N `  { Y } ) )  =  ( L `  { G } ) ) )
30 oveq2 6285 . . . . . . . . 9  |-  ( h  =  G  ->  ( F R h )  =  ( F R G ) )
3130sneqd 4022 . . . . . . . 8  |-  ( h  =  G  ->  { ( F R h ) }  =  { ( F R G ) } )
3231fveq2d 5856 . . . . . . 7  |-  ( h  =  G  ->  ( L `  { ( F R h ) } )  =  ( L `
 { ( F R G ) } ) )
3332eqeq2d 2455 . . . . . 6  |-  ( h  =  G  ->  (
( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `  { ( F R h ) } )  <->  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) )
3429, 33anbi12d 710 . . . . 5  |-  ( h  =  G  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3534adantl 466 . . . 4  |-  ( (
ph  /\  h  =  G )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R h ) } ) )  <->  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { G }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R G ) } ) ) ) )
3623, 24, 25, 26, 35riota2df 6259 . . 3  |-  ( (
ph  /\  E! h  e.  D  ( ( M `  ( N `  { Y } ) )  =  ( L `
 { h }
)  /\  ( M `  ( N `  {
( X  .-  Y
) } ) )  =  ( L `  { ( F R h ) } ) ) )  ->  (
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) )  <->  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3722, 36mpdan 668 . 2  |-  ( ph  ->  ( ( ( M `
 ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( L `  { ( F R G ) } ) )  <->  ( iota_ h  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( L `  { h } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R h ) } ) ) )  =  G ) )
3819, 37bitr4d 256 1  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( L `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( L `
 { ( F R G ) } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802    =/= wne 2636   E!wreu 2793    \ cdif 3455   {csn 4010   <.cotp 4018   ` cfv 5574   iota_crio 6237  (class class class)co 6277   Basecbs 14504   0gc0g 14709   -gcsg 15924   LSpanclspn 17485   HLchlt 34777   LHypclh 35410   DVecHcdvh 36507  LCDualclcd 37015  mapdcmpd 37053  HDMap1chdma1 37221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-riotaBAD 34386
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-ot 4019  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-tpos 6953  df-undef 7000  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-n0 10797  df-z 10866  df-uz 11086  df-fz 11677  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-sca 14585  df-vsca 14586  df-0g 14711  df-mre 14855  df-mrc 14856  df-acs 14858  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-grp 15926  df-minusg 15927  df-sbg 15928  df-subg 16067  df-cntz 16224  df-oppg 16250  df-lsm 16525  df-cmn 16669  df-abl 16670  df-mgp 17010  df-ur 17022  df-ring 17068  df-oppr 17140  df-dvdsr 17158  df-unit 17159  df-invr 17189  df-dvr 17200  df-drng 17266  df-lmod 17382  df-lss 17447  df-lsp 17486  df-lvec 17617  df-lsatoms 34403  df-lshyp 34404  df-lcv 34446  df-lfl 34485  df-lkr 34513  df-ldual 34551  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926  df-lines 34927  df-psubsp 34929  df-pmap 34930  df-padd 35222  df-lhyp 35414  df-laut 35415  df-ldil 35530  df-ltrn 35531  df-trl 35586  df-tgrp 36171  df-tendo 36183  df-edring 36185  df-dveca 36431  df-disoa 36458  df-dvech 36508  df-dib 36568  df-dic 36602  df-dih 36658  df-doch 36777  df-djh 36824  df-lcdual 37016  df-mapd 37054  df-hdmap1 37223
This theorem is referenced by:  hdmap1l6lem1  37237  hdmap1l6lem2  37238  hdmap1l6a  37239  hdmap1neglem1N  37257  hdmapval3lemN  37269  hdmap10lem  37271  hdmap11lem1  37273
  Copyright terms: Public domain W3C validator