![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap10lem | Structured version Unicode version |
Description: Lemma for hdmap10 35796. (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmap10.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.u |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
hdmap10lem.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
hdmap10lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap10.h |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | hdmap10.u |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | hdmap10.v |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | hdmap10.n |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | hdmap10.k |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | hdmap10.o |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | hdmap10.e |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 35065 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | eldifad 3440 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | hdmap10lem.t |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 12 | eldifad 3440 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 1, 2, 3, 4, 5, 11, 13 | dvh3dim 35399 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | hdmap10.c |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | hdmap10.d |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | hdmap10.j |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | hdmap10.i |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | hdmap10.s |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 5 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 13 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | simp2 989 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | eqid 2451 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 1, 2, 5 | dvhlmod 35063 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 3, 23, 4, 24, 11, 13 | lspprcl 17167 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 3, 4, 24, 11, 13 | lspprid1 17186 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 23, 4, 24, 25, 26 | lspsnel5a 17185 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 3, 4, 24, 11, 13 | lspprid2 17187 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 23, 4, 24, 25, 28 | lspsnel5a 17185 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 27, 29 | unssd 3632 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 30 | sseld 3455 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31 | con3dimp 441 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32 | 3adant2 1007 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 1, 9, 2, 3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 33 | hdmapval2 35788 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 34 | eqcomd 2459 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | eqid 2451 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | eqid 2451 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
38 | hdmap10.l |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
39 | hdmap10.m |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
40 | 24 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | 25 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | simp3 990 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
43 | 3, 8, 23, 40, 41, 22, 42 | lssneln0 17141 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | eqid 2451 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
45 | 1, 2, 3, 8, 15, 16, 44, 17, 5, 10 | hvmapcl2 35719 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 45 | eldifad 3440 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 46 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 1, 2, 3, 8, 4, 15, 38, 39, 17, 5, 10 | mapdhvmap 35722 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 48 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 1, 2, 5 | dvhlvec 35062 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 50 | 3ad2ant1 1009 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 11 | 3ad2ant1 1009 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 3, 4, 51, 22, 52, 21, 42 | lspindpi 17321 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 53 | simpld 459 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 54 | necomd 2719 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 10 | 3ad2ant1 1009 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | 1, 2, 3, 8, 4, 15, 16, 38, 39, 18, 20, 47, 49, 55, 56, 22 | hdmap1cl 35758 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 12 | 3ad2ant1 1009 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | 1, 2, 3, 15, 16, 19, 5, 13 | hdmapcl 35786 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
60 | 59 | 3ad2ant1 1009 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
61 | 53 | simprd 463 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
62 | eqid 2451 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
63 | 1, 2, 3, 36, 8, 4, 15, 16, 37, 38, 39, 18, 20, 56, 47, 43, 57, 55, 49 | hdmap1eq 35755 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
64 | 62, 63 | mpbii 211 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 64 | simpld 459 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
66 | 1, 2, 3, 36, 8, 4, 15, 16, 37, 38, 39, 18, 20, 43, 57, 58, 60, 61, 65 | hdmap1eq 35755 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
67 | 35, 66 | mpbid 210 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
68 | 67 | simpld 459 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
69 | 68 | rexlimdv3a 2941 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
70 | 14, 69 | mpd 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4503 ax-sep 4513 ax-nul 4521 ax-pow 4570 ax-pr 4631 ax-un 6474 ax-cnex 9441 ax-resscn 9442 ax-1cn 9443 ax-icn 9444 ax-addcl 9445 ax-addrcl 9446 ax-mulcl 9447 ax-mulrcl 9448 ax-mulcom 9449 ax-addass 9450 ax-mulass 9451 ax-distr 9452 ax-i2m1 9453 ax-1ne0 9454 ax-1rid 9455 ax-rnegex 9456 ax-rrecex 9457 ax-cnre 9458 ax-pre-lttri 9459 ax-pre-lttrn 9460 ax-pre-ltadd 9461 ax-pre-mulgt0 9462 ax-riotaBAD 32912 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-fal 1376 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-nel 2647 df-ral 2800 df-rex 2801 df-reu 2802 df-rmo 2803 df-rab 2804 df-v 3072 df-sbc 3287 df-csb 3389 df-dif 3431 df-un 3433 df-in 3435 df-ss 3442 df-pss 3444 df-nul 3738 df-if 3892 df-pw 3962 df-sn 3978 df-pr 3980 df-tp 3982 df-op 3984 df-ot 3986 df-uni 4192 df-int 4229 df-iun 4273 df-iin 4274 df-br 4393 df-opab 4451 df-mpt 4452 df-tr 4486 df-eprel 4732 df-id 4736 df-po 4741 df-so 4742 df-fr 4779 df-we 4781 df-ord 4822 df-on 4823 df-lim 4824 df-suc 4825 df-xp 4946 df-rel 4947 df-cnv 4948 df-co 4949 df-dm 4950 df-rn 4951 df-res 4952 df-ima 4953 df-iota 5481 df-fun 5520 df-fn 5521 df-f 5522 df-f1 5523 df-fo 5524 df-f1o 5525 df-fv 5526 df-riota 6153 df-ov 6195 df-oprab 6196 df-mpt2 6197 df-of 6422 df-om 6579 df-1st 6679 df-2nd 6680 df-tpos 6847 df-undef 6894 df-recs 6934 df-rdg 6968 df-1o 7022 df-oadd 7026 df-er 7203 df-map 7318 df-en 7413 df-dom 7414 df-sdom 7415 df-fin 7416 df-pnf 9523 df-mnf 9524 df-xr 9525 df-ltxr 9526 df-le 9527 df-sub 9700 df-neg 9701 df-nn 10426 df-2 10483 df-3 10484 df-4 10485 df-5 10486 df-6 10487 df-n0 10683 df-z 10750 df-uz 10965 df-fz 11541 df-struct 14280 df-ndx 14281 df-slot 14282 df-base 14283 df-sets 14284 df-ress 14285 df-plusg 14355 df-mulr 14356 df-sca 14358 df-vsca 14359 df-0g 14484 df-mre 14628 df-mrc 14629 df-acs 14631 df-poset 15220 df-plt 15232 df-lub 15248 df-glb 15249 df-join 15250 df-meet 15251 df-p0 15313 df-p1 15314 df-lat 15320 df-clat 15382 df-mnd 15519 df-submnd 15569 df-grp 15649 df-minusg 15650 df-sbg 15651 df-subg 15782 df-cntz 15939 df-oppg 15965 df-lsm 16241 df-cmn 16385 df-abl 16386 df-mgp 16699 df-ur 16711 df-rng 16755 df-oppr 16823 df-dvdsr 16841 df-unit 16842 df-invr 16872 df-dvr 16883 df-drng 16942 df-lmod 17058 df-lss 17122 df-lsp 17161 df-lvec 17292 df-lsatoms 32929 df-lshyp 32930 df-lcv 32972 df-lfl 33011 df-lkr 33039 df-ldual 33077 df-oposet 33129 df-ol 33131 df-oml 33132 df-covers 33219 df-ats 33220 df-atl 33251 df-cvlat 33275 df-hlat 33304 df-llines 33450 df-lplanes 33451 df-lvols 33452 df-lines 33453 df-psubsp 33455 df-pmap 33456 df-padd 33748 df-lhyp 33940 df-laut 33941 df-ldil 34056 df-ltrn 34057 df-trl 34111 df-tgrp 34695 df-tendo 34707 df-edring 34709 df-dveca 34955 df-disoa 34982 df-dvech 35032 df-dib 35092 df-dic 35126 df-dih 35182 df-doch 35301 df-djh 35348 df-lcdual 35540 df-mapd 35578 df-hvmap 35710 df-hdmap1 35747 df-hdmap 35748 |
This theorem is referenced by: hdmap10 35796 |
Copyright terms: Public domain | W3C validator |