HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Structured version   Unicode version

Theorem hcau 26227
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Distinct variable group:    x, y, z, F

Proof of Theorem hcau
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq1 5871 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
2 fveq1 5871 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  z )  =  ( F `  z ) )
31, 2oveq12d 6314 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  y
)  -h  ( f `
 z ) )  =  ( ( F `
 y )  -h  ( F `  z
) ) )
43fveq2d 5876 . . . . . 6  |-  ( f  =  F  ->  ( normh `  ( ( f `
 y )  -h  ( f `  z
) ) )  =  ( normh `  ( ( F `  y )  -h  ( F `  z
) ) ) )
54breq1d 4466 . . . . 5  |-  ( f  =  F  ->  (
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  ( normh `  (
( F `  y
)  -h  ( F `
 z ) ) )  <  x ) )
65rexralbidv 2976 . . . 4  |-  ( f  =  F  ->  ( E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x  <->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
76ralbidv 2896 . . 3  |-  ( f  =  F  ->  ( A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
8 df-hcau 26016 . . 3  |-  Cauchy  =  {
f  e.  ( ~H 
^m  NN )  | 
A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  y )  -h  (
f `  z )
) )  <  x }
97, 8elrab2 3259 . 2  |-  ( F  e.  Cauchy 
<->  ( F  e.  ( ~H  ^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
10 ax-hilex 26042 . . . 4  |-  ~H  e.  _V
11 nnex 10562 . . . 4  |-  NN  e.  _V
1210, 11elmap 7466 . . 3  |-  ( F  e.  ( ~H  ^m  NN )  <->  F : NN --> ~H )
1312anbi1i 695 . 2  |-  ( ( F  e.  ( ~H 
^m  NN )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x )  <->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( ( F `  y )  -h  ( F `  z
) ) )  < 
x ) )
149, 13bitri 249 1  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z )
) )  <  x
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   class class class wbr 4456   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^m cmap 7438    < clt 9645   NNcn 10556   ZZ>=cuz 11106   RR+crp 11245   ~Hchil 25962   normhcno 25966    -h cmv 25968   Cauchyccau 25969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-i2m1 9577  ax-1ne0 9578  ax-rrecex 9581  ax-cnre 9582  ax-hilex 26042
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-map 7440  df-nn 10557  df-hcau 26016
This theorem is referenced by:  hcauseq  26228  hcaucvg  26229  seq1hcau  26230  chscllem2  26682
  Copyright terms: Public domain W3C validator