Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem2 Structured version   Unicode version

Theorem hbtlem2 29485
Description: Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem2.t  |-  T  =  (LIdeal `  R )
Assertion
Ref Expression
hbtlem2  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  e.  T )

Proof of Theorem hbtlem2
Dummy variables  a 
b  c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.p . . 3  |-  P  =  (Poly1 `  R )
2 hbtlem.u . . 3  |-  U  =  (LIdeal `  P )
3 hbtlem.s . . 3  |-  S  =  (ldgIdlSeq `  R )
4 eqid 2443 . . 3  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
51, 2, 3, 4hbtlem1 29484 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  =  { a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } )
6 eqid 2443 . . . . . . . . . . . 12  |-  ( Base `  P )  =  (
Base `  P )
76, 2lidlss 17296 . . . . . . . . . . 11  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
873ad2ant2 1010 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  I  C_  ( Base `  P
) )
98sselda 3361 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  b  e.  ( Base `  P ) )
10 eqid 2443 . . . . . . . . . 10  |-  (coe1 `  b
)  =  (coe1 `  b
)
11 eqid 2443 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
1210, 6, 1, 11coe1f 17672 . . . . . . . . 9  |-  ( b  e.  ( Base `  P
)  ->  (coe1 `  b
) : NN0 --> ( Base `  R ) )
139, 12syl 16 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  (coe1 `  b ) : NN0 --> ( Base `  R
) )
14 simpl3 993 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  X  e.  NN0 )
1513, 14ffvelrnd 5849 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  ( (coe1 `  b ) `  X )  e.  (
Base `  R )
)
16 eleq1a 2512 . . . . . . 7  |-  ( ( (coe1 `  b ) `  X )  e.  (
Base `  R )  ->  ( a  =  ( (coe1 `  b ) `  X )  ->  a  e.  ( Base `  R
) ) )
1715, 16syl 16 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  ( a  =  ( (coe1 `  b ) `  X )  ->  a  e.  ( Base `  R
) ) )
1817adantld 467 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  b  e.  I )  ->  ( ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) )  ->  a  e.  ( Base `  R
) ) )
1918rexlimdva 2846 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  -> 
a  e.  ( Base `  R ) ) )
2019abssdv 3431 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  C_  ( Base `  R )
)
211ply1rng 17708 . . . . . . . 8  |-  ( R  e.  Ring  ->  P  e. 
Ring )
22213ad2ant1 1009 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  P  e.  Ring )
23 simp2 989 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  I  e.  U )
24 eqid 2443 . . . . . . . 8  |-  ( 0g
`  P )  =  ( 0g `  P
)
252, 24lidl0cl 17299 . . . . . . 7  |-  ( ( P  e.  Ring  /\  I  e.  U )  ->  ( 0g `  P )  e.  I )
2622, 23, 25syl2anc 661 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  ( 0g `  P )  e.  I )
274, 1, 24deg1z 21563 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( deg1  `  R ) `  ( 0g `  P ) )  = -oo )
28273ad2ant1 1009 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( deg1  `
 R ) `  ( 0g `  P ) )  = -oo )
29 nn0ssre 10588 . . . . . . . . . 10  |-  NN0  C_  RR
30 ressxr 9432 . . . . . . . . . 10  |-  RR  C_  RR*
3129, 30sstri 3370 . . . . . . . . 9  |-  NN0  C_  RR*
32 simp3 990 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  X  e.  NN0 )
3331, 32sseldi 3359 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  X  e.  RR* )
34 mnfle 11118 . . . . . . . 8  |-  ( X  e.  RR*  -> -oo  <_  X )
3533, 34syl 16 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  -> -oo  <_  X )
3628, 35eqbrtrd 4317 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( deg1  `
 R ) `  ( 0g `  P ) )  <_  X )
37 eqid 2443 . . . . . . . . . 10  |-  ( 0g
`  R )  =  ( 0g `  R
)
381, 24, 37coe1z 17722 . . . . . . . . 9  |-  ( R  e.  Ring  ->  (coe1 `  ( 0g `  P ) )  =  ( NN0  X.  { ( 0g `  R ) } ) )
39383ad2ant1 1009 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (coe1 `  ( 0g `  P ) )  =  ( NN0 
X.  { ( 0g
`  R ) } ) )
4039fveq1d 5698 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
(coe1 `  ( 0g `  P ) ) `  X )  =  ( ( NN0  X.  {
( 0g `  R
) } ) `  X ) )
41 fvex 5706 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
4241fvconst2 5938 . . . . . . . 8  |-  ( X  e.  NN0  ->  ( ( NN0  X.  { ( 0g `  R ) } ) `  X
)  =  ( 0g
`  R ) )
43423ad2ant3 1011 . . . . . . 7  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( NN0  X.  { ( 0g `  R ) } ) `  X
)  =  ( 0g
`  R ) )
4440, 43eqtr2d 2476 . . . . . 6  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  ( 0g `  R )  =  ( (coe1 `  ( 0g `  P ) ) `  X ) )
45 fveq2 5696 . . . . . . . . 9  |-  ( b  =  ( 0g `  P )  ->  (
( deg1  `
 R ) `  b )  =  ( ( deg1  `  R ) `  ( 0g `  P ) ) )
4645breq1d 4307 . . . . . . . 8  |-  ( b  =  ( 0g `  P )  ->  (
( ( deg1  `  R ) `  b )  <_  X  <->  ( ( deg1  `  R ) `  ( 0g `  P ) )  <_  X )
)
47 fveq2 5696 . . . . . . . . . 10  |-  ( b  =  ( 0g `  P )  ->  (coe1 `  b )  =  (coe1 `  ( 0g `  P
) ) )
4847fveq1d 5698 . . . . . . . . 9  |-  ( b  =  ( 0g `  P )  ->  (
(coe1 `  b ) `  X )  =  ( (coe1 `  ( 0g `  P ) ) `  X ) )
4948eqeq2d 2454 . . . . . . . 8  |-  ( b  =  ( 0g `  P )  ->  (
( 0g `  R
)  =  ( (coe1 `  b ) `  X
)  <->  ( 0g `  R )  =  ( (coe1 `  ( 0g `  P ) ) `  X ) ) )
5046, 49anbi12d 710 . . . . . . 7  |-  ( b  =  ( 0g `  P )  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  ( 0g
`  R )  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  ( 0g `  P ) )  <_  X  /\  ( 0g `  R )  =  ( (coe1 `  ( 0g `  P ) ) `
 X ) ) ) )
5150rspcev 3078 . . . . . 6  |-  ( ( ( 0g `  P
)  e.  I  /\  ( ( ( deg1  `  R
) `  ( 0g `  P ) )  <_  X  /\  ( 0g `  R )  =  ( (coe1 `  ( 0g `  P ) ) `  X ) ) )  ->  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  ( 0g
`  R )  =  ( (coe1 `  b ) `  X ) ) )
5226, 36, 44, 51syl12anc 1216 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( 0g `  R
)  =  ( (coe1 `  b ) `  X
) ) )
53 eqeq1 2449 . . . . . . . 8  |-  ( a  =  ( 0g `  R )  ->  (
a  =  ( (coe1 `  b ) `  X
)  <->  ( 0g `  R )  =  ( (coe1 `  b ) `  X ) ) )
5453anbi2d 703 . . . . . . 7  |-  ( a  =  ( 0g `  R )  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( 0g `  R
)  =  ( (coe1 `  b ) `  X
) ) ) )
5554rexbidv 2741 . . . . . 6  |-  ( a  =  ( 0g `  R )  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( 0g `  R
)  =  ( (coe1 `  b ) `  X
) ) ) )
5641, 55elab 3111 . . . . 5  |-  ( ( 0g `  R )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  <->  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  ( 0g
`  R )  =  ( (coe1 `  b ) `  X ) ) )
5752, 56sylibr 212 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  ( 0g `  R )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } )
58 ne0i 3648 . . . 4  |-  ( ( 0g `  R )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  ->  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  =/=  (/) )
5957, 58syl 16 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  =/=  (/) )
6022adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  P  e.  Ring )
61 simpl2 992 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  I  e.  U
)
62 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  (algSc `  P )  =  (algSc `  P )
631, 62, 11, 6ply1sclf 17743 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( R  e.  Ring  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
64633ad2ant1 1009 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
6564adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  (algSc `  P
) : ( Base `  R ) --> ( Base `  P ) )
66 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  c  e.  (
Base `  R )
)
6765, 66ffvelrnd 5849 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( (algSc `  P ) `  c
)  e.  ( Base `  P ) )
68 simprll 761 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( c  e.  ( Base `  R )  /\  (
( f  e.  I  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  ( g  e.  I  /\  (
( deg1  `
 R ) `  g )  <_  X
) ) )  -> 
f  e.  I )
6968adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  f  e.  I
)
70 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( .r
`  P )  =  ( .r `  P
)
712, 6, 70lidlmcl 17304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( ( (algSc `  P ) `  c
)  e.  ( Base `  P )  /\  f  e.  I ) )  -> 
( ( (algSc `  P ) `  c
) ( .r `  P ) f )  e.  I )
7260, 61, 67, 69, 71syl22anc 1219 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( (algSc `  P ) `  c
) ( .r `  P ) f )  e.  I )
73 simprrl 763 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c  e.  ( Base `  R )  /\  (
( f  e.  I  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  ( g  e.  I  /\  (
( deg1  `
 R ) `  g )  <_  X
) ) )  -> 
g  e.  I )
7473adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  g  e.  I
)
75 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( +g  `  P )  =  ( +g  `  P )
762, 75lidlacl 17300 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f )  e.  I  /\  g  e.  I )
)  ->  ( (
( (algSc `  P
) `  c )
( .r `  P
) f ) ( +g  `  P ) g )  e.  I
)
7760, 61, 72, 74, 76syl22anc 1219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  e.  I )
78 simpl1 991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  R  e.  Ring )
798adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  I  C_  ( Base `  P ) )
8079, 69sseldd 3362 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  f  e.  (
Base `  P )
)
816, 70rngcl 16663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  (
(algSc `  P ) `  c )  e.  (
Base `  P )  /\  f  e.  ( Base `  P ) )  ->  ( ( (algSc `  P ) `  c
) ( .r `  P ) f )  e.  ( Base `  P
) )
8260, 67, 80, 81syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( (algSc `  P ) `  c
) ( .r `  P ) f )  e.  ( Base `  P
) )
8379, 74sseldd 3362 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  g  e.  (
Base `  P )
)
84 simpl3 993 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  X  e.  NN0 )
8531, 84sseldi 3359 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  X  e.  RR* )
864, 1, 6deg1xrcl 21558 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( (algSc `  P
) `  c )
( .r `  P
) f )  e.  ( Base `  P
)  ->  ( ( deg1  `  R ) `  (
( (algSc `  P
) `  c )
( .r `  P
) f ) )  e.  RR* )
8782, 86syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  ( (
(algSc `  P ) `  c ) ( .r
`  P ) f ) )  e.  RR* )
884, 1, 6deg1xrcl 21558 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  e.  ( Base `  P
)  ->  ( ( deg1  `  R ) `  f
)  e.  RR* )
8980, 88syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  f )  e.  RR* )
904, 1, 11, 6, 70, 62deg1mul3le 21593 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  Ring  /\  c  e.  ( Base `  R
)  /\  f  e.  ( Base `  P )
)  ->  ( ( deg1  `  R ) `  (
( (algSc `  P
) `  c )
( .r `  P
) f ) )  <_  ( ( deg1  `  R
) `  f )
)
9178, 66, 80, 90syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  ( (
(algSc `  P ) `  c ) ( .r
`  P ) f ) )  <_  (
( deg1  `
 R ) `  f ) )
92 simprlr 762 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( c  e.  ( Base `  R )  /\  (
( f  e.  I  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  ( g  e.  I  /\  (
( deg1  `
 R ) `  g )  <_  X
) ) )  -> 
( ( deg1  `  R ) `  f )  <_  X
)
9392adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  f )  <_  X )
9487, 89, 85, 91, 93xrletrd 11141 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  ( (
(algSc `  P ) `  c ) ( .r
`  P ) f ) )  <_  X
)
95 simprrr 764 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c  e.  ( Base `  R )  /\  (
( f  e.  I  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  ( g  e.  I  /\  (
( deg1  `
 R ) `  g )  <_  X
) ) )  -> 
( ( deg1  `  R ) `  g )  <_  X
)
9695adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  g )  <_  X )
971, 4, 78, 6, 75, 82, 83, 85, 94, 96deg1addle2 21579 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( deg1  `  R
) `  ( (
( (algSc `  P
) `  c )
( .r `  P
) f ) ( +g  `  P ) g ) )  <_  X )
98 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( +g  `  R )  =  ( +g  `  R )
991, 6, 75, 98coe1addfv 17724 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  ( ( (algSc `  P ) `  c
) ( .r `  P ) f )  e.  ( Base `  P
)  /\  g  e.  ( Base `  P )
)  /\  X  e.  NN0 )  ->  ( (coe1 `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) ) `
 X )  =  ( ( (coe1 `  (
( (algSc `  P
) `  c )
( .r `  P
) f ) ) `
 X ) ( +g  `  R ) ( (coe1 `  g ) `  X ) ) )
10078, 82, 83, 84, 99syl31anc 1221 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( (coe1 `  (
( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) ) `
 X )  =  ( ( (coe1 `  (
( (algSc `  P
) `  c )
( .r `  P
) f ) ) `
 X ) ( +g  `  R ) ( (coe1 `  g ) `  X ) ) )
101 eqid 2443 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( .r
`  R )  =  ( .r `  R
)
1021, 6, 11, 62, 70, 101coe1sclmulfv 17741 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  e.  Ring  /\  (
c  e.  ( Base `  R )  /\  f  e.  ( Base `  P
) )  /\  X  e.  NN0 )  ->  (
(coe1 `  ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ) `  X )  =  ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) )
10378, 66, 80, 84, 102syl121anc 1223 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( (coe1 `  (
( (algSc `  P
) `  c )
( .r `  P
) f ) ) `
 X )  =  ( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) )
104103oveq1d 6111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( (coe1 `  ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ) `  X ) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  =  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) ) )
105100, 104eqtr2d 2476 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  =  ( (coe1 `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) ) `
 X ) )
106 fveq2 5696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
( ( deg1  `  R ) `  b )  =  ( ( deg1  `  R ) `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) ) )
107106breq1d 4307 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
( ( ( deg1  `  R
) `  b )  <_  X  <->  ( ( deg1  `  R
) `  ( (
( (algSc `  P
) `  c )
( .r `  P
) f ) ( +g  `  P ) g ) )  <_  X ) )
108 fveq2 5696 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
(coe1 `  b )  =  (coe1 `  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g ) ) )
109108fveq1d 5698 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
( (coe1 `  b ) `  X )  =  ( (coe1 `  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g ) ) `
 X ) )
110109eqeq2d 2454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
( ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  =  ( (coe1 `  b ) `  X
)  <->  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  =  ( (coe1 `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) ) `
 X ) ) )
111107, 110anbi12d 710 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g )  -> 
( ( ( ( deg1  `  R ) `  b
)  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) )  <_  X  /\  (
( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g ) ) `
 X ) ) ) )
112111rspcev 3078 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g )  e.  I  /\  ( ( ( deg1  `  R ) `  ( ( ( (algSc `  P ) `  c
) ( .r `  P ) f ) ( +g  `  P
) g ) )  <_  X  /\  (
( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  ( ( ( (algSc `  P ) `  c ) ( .r
`  P ) f ) ( +g  `  P
) g ) ) `
 X ) ) )  ->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  b ) `  X ) ) )
11377, 97, 105, 112syl12anc 1216 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  =  ( (coe1 `  b ) `  X ) ) )
114 ovex 6121 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  e.  _V
115 eqeq1 2449 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( a  =  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  ->  ( a  =  ( (coe1 `  b
) `  X )  <->  ( ( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  b ) `  X ) ) )
116115anbi2d 703 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  ->  ( (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  b ) `  X ) ) ) )
117116rexbidv 2741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  ->  ( E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  =  ( (coe1 `  b ) `  X ) ) ) )
118114, 117elab 3111 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  <->  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  =  ( (coe1 `  b ) `  X ) ) )
119113, 118sylibr 212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  ( c  e.  (
Base `  R )  /\  ( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  /\  ( g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
) ) ) )  ->  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) ( (coe1 `  g
) `  X )
)  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) } )
120119exp45 614 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
c  e.  ( Base `  R )  ->  (
( f  e.  I  /\  ( ( deg1  `  R ) `  f )  <_  X
)  ->  ( (
g  e.  I  /\  ( ( deg1  `  R ) `  g )  <_  X
)  ->  ( (
c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) ) ) )
121120imp 429 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  -> 
( ( f  e.  I  /\  ( ( deg1  `  R ) `  f
)  <_  X )  ->  ( ( g  e.  I  /\  ( ( deg1  `  R ) `  g
)  <_  X )  ->  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) ) )
122121exp5c 616 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  -> 
( f  e.  I  ->  ( ( ( deg1  `  R
) `  f )  <_  X  ->  ( g  e.  I  ->  ( ( ( deg1  `  R ) `  g )  <_  X  ->  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) ) ) ) )
123122imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  (
Base `  R )
)  /\  f  e.  I )  ->  (
( ( deg1  `  R ) `  f )  <_  X  ->  ( g  e.  I  ->  ( ( ( deg1  `  R
) `  g )  <_  X  ->  ( (
c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) ) ) )
124123imp41 593 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  /\  f  e.  I )  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  g  e.  I )  /\  (
( deg1  `
 R ) `  g )  <_  X
)  ->  ( (
c ( .r `  R ) ( (coe1 `  f ) `  X
) ) ( +g  `  R ) ( (coe1 `  g ) `  X
) )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } )
125 oveq2 6104 . . . . . . . . . . . . . . 15  |-  ( e  =  ( (coe1 `  g
) `  X )  ->  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  =  ( ( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) ) )
126125eleq1d 2509 . . . . . . . . . . . . . 14  |-  ( e  =  ( (coe1 `  g
) `  X )  ->  ( ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) e )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  <-> 
( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) ( (coe1 `  g ) `  X ) )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
127124, 126syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  /\  f  e.  I )  /\  ( ( deg1  `  R ) `  f )  <_  X
)  /\  g  e.  I )  /\  (
( deg1  `
 R ) `  g )  <_  X
)  ->  ( e  =  ( (coe1 `  g
) `  X )  ->  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
128127expimpd 603 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  /\  c  e.  ( Base `  R
) )  /\  f  e.  I )  /\  (
( deg1  `
 R ) `  f )  <_  X
)  /\  g  e.  I )  ->  (
( ( ( deg1  `  R
) `  g )  <_  X  /\  e  =  ( (coe1 `  g ) `  X ) )  -> 
( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
129128rexlimdva 2846 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  /\  c  e.  ( Base `  R
) )  /\  f  e.  I )  /\  (
( deg1  `
 R ) `  f )  <_  X
)  ->  ( E. g  e.  I  (
( ( deg1  `  R ) `  g )  <_  X  /\  e  =  (
(coe1 `  g ) `  X ) )  -> 
( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
130129alrimiv 1685 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  /\  c  e.  ( Base `  R
) )  /\  f  e.  I )  /\  (
( deg1  `
 R ) `  f )  <_  X
)  ->  A. e
( E. g  e.  I  ( ( ( deg1  `  R ) `  g
)  <_  X  /\  e  =  ( (coe1 `  g ) `  X
) )  ->  (
( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
131 eqeq1 2449 . . . . . . . . . . . . . 14  |-  ( a  =  e  ->  (
a  =  ( (coe1 `  b ) `  X
)  <->  e  =  ( (coe1 `  b ) `  X ) ) )
132131anbi2d 703 . . . . . . . . . . . . 13  |-  ( a  =  e  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) ) )
133132rexbidv 2741 . . . . . . . . . . . 12  |-  ( a  =  e  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) ) ) )
134 fveq2 5696 . . . . . . . . . . . . . . 15  |-  ( b  =  g  ->  (
( deg1  `
 R ) `  b )  =  ( ( deg1  `  R ) `  g ) )
135134breq1d 4307 . . . . . . . . . . . . . 14  |-  ( b  =  g  ->  (
( ( deg1  `  R ) `  b )  <_  X  <->  ( ( deg1  `  R ) `  g )  <_  X
) )
136 fveq2 5696 . . . . . . . . . . . . . . . 16  |-  ( b  =  g  ->  (coe1 `  b )  =  (coe1 `  g ) )
137136fveq1d 5698 . . . . . . . . . . . . . . 15  |-  ( b  =  g  ->  (
(coe1 `  b ) `  X )  =  ( (coe1 `  g ) `  X ) )
138137eqeq2d 2454 . . . . . . . . . . . . . 14  |-  ( b  =  g  ->  (
e  =  ( (coe1 `  b ) `  X
)  <->  e  =  ( (coe1 `  g ) `  X ) ) )
139135, 138anbi12d 710 . . . . . . . . . . . . 13  |-  ( b  =  g  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  e  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  g )  <_  X  /\  e  =  (
(coe1 `  g ) `  X ) ) ) )
140139cbvrexv 2953 . . . . . . . . . . . 12  |-  ( E. b  e.  I  ( ( ( deg1  `  R ) `  b )  <_  X  /\  e  =  (
(coe1 `  b ) `  X ) )  <->  E. g  e.  I  ( (
( deg1  `
 R ) `  g )  <_  X  /\  e  =  (
(coe1 `  g ) `  X ) ) )
141133, 140syl6bb 261 . . . . . . . . . . 11  |-  ( a  =  e  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  E. g  e.  I  ( (
( deg1  `
 R ) `  g )  <_  X  /\  e  =  (
(coe1 `  g ) `  X ) ) ) )
142141ralab 3125 . . . . . . . . . 10  |-  ( A. e  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  <->  A. e ( E. g  e.  I  ( (
( deg1  `
 R ) `  g )  <_  X  /\  e  =  (
(coe1 `  g ) `  X ) )  -> 
( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
143130, 142sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  /\  c  e.  ( Base `  R
) )  /\  f  e.  I )  /\  (
( deg1  `
 R ) `  f )  <_  X
)  ->  A. e  e.  { a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } )
144 oveq2 6104 . . . . . . . . . . . 12  |-  ( d  =  ( (coe1 `  f
) `  X )  ->  ( c ( .r
`  R ) d )  =  ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) )
145144oveq1d 6111 . . . . . . . . . . 11  |-  ( d  =  ( (coe1 `  f
) `  X )  ->  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  =  ( ( c ( .r `  R
) ( (coe1 `  f
) `  X )
) ( +g  `  R
) e ) )
146145eleq1d 2509 . . . . . . . . . 10  |-  ( d  =  ( (coe1 `  f
) `  X )  ->  ( ( ( c ( .r `  R
) d ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  <-> 
( ( c ( .r `  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
147146ralbidv 2740 . . . . . . . . 9  |-  ( d  =  ( (coe1 `  f
) `  X )  ->  ( A. e  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  <->  A. e  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  (
( c ( .r
`  R ) ( (coe1 `  f ) `  X ) ) ( +g  `  R ) e )  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
148143, 147syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  /\  c  e.  ( Base `  R
) )  /\  f  e.  I )  /\  (
( deg1  `
 R ) `  f )  <_  X
)  ->  ( d  =  ( (coe1 `  f
) `  X )  ->  A. e  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } ) )
149148expimpd 603 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  (
Base `  R )
)  /\  f  e.  I )  ->  (
( ( ( deg1  `  R
) `  f )  <_  X  /\  d  =  ( (coe1 `  f ) `  X ) )  ->  A. e  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  (
( c ( .r
`  R ) d ) ( +g  `  R
) e )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
150149rexlimdva 2846 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  -> 
( E. f  e.  I  ( ( ( deg1  `  R ) `  f
)  <_  X  /\  d  =  ( (coe1 `  f ) `  X
) )  ->  A. e  e.  { a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } ) )
151150alrimiv 1685 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  ->  A. d ( E. f  e.  I  ( (
( deg1  `
 R ) `  f )  <_  X  /\  d  =  (
(coe1 `  f ) `  X ) )  ->  A. e  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  (
( c ( .r
`  R ) d ) ( +g  `  R
) e )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
152 eqeq1 2449 . . . . . . . . 9  |-  ( a  =  d  ->  (
a  =  ( (coe1 `  b ) `  X
)  <->  d  =  ( (coe1 `  b ) `  X ) ) )
153152anbi2d 703 . . . . . . . 8  |-  ( a  =  d  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) ) )
154153rexbidv 2741 . . . . . . 7  |-  ( a  =  d  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) ) ) )
155 fveq2 5696 . . . . . . . . . 10  |-  ( b  =  f  ->  (
( deg1  `
 R ) `  b )  =  ( ( deg1  `  R ) `  f ) )
156155breq1d 4307 . . . . . . . . 9  |-  ( b  =  f  ->  (
( ( deg1  `  R ) `  b )  <_  X  <->  ( ( deg1  `  R ) `  f )  <_  X
) )
157 fveq2 5696 . . . . . . . . . . 11  |-  ( b  =  f  ->  (coe1 `  b )  =  (coe1 `  f ) )
158157fveq1d 5698 . . . . . . . . . 10  |-  ( b  =  f  ->  (
(coe1 `  b ) `  X )  =  ( (coe1 `  f ) `  X ) )
159158eqeq2d 2454 . . . . . . . . 9  |-  ( b  =  f  ->  (
d  =  ( (coe1 `  b ) `  X
)  <->  d  =  ( (coe1 `  f ) `  X ) ) )
160156, 159anbi12d 710 . . . . . . . 8  |-  ( b  =  f  ->  (
( ( ( deg1  `  R
) `  b )  <_  X  /\  d  =  ( (coe1 `  b ) `  X ) )  <->  ( (
( deg1  `
 R ) `  f )  <_  X  /\  d  =  (
(coe1 `  f ) `  X ) ) ) )
161160cbvrexv 2953 . . . . . . 7  |-  ( E. b  e.  I  ( ( ( deg1  `  R ) `  b )  <_  X  /\  d  =  (
(coe1 `  b ) `  X ) )  <->  E. f  e.  I  ( (
( deg1  `
 R ) `  f )  <_  X  /\  d  =  (
(coe1 `  f ) `  X ) ) )
162154, 161syl6bb 261 . . . . . 6  |-  ( a  =  d  ->  ( E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) )  <->  E. f  e.  I  ( (
( deg1  `
 R ) `  f )  <_  X  /\  d  =  (
(coe1 `  f ) `  X ) ) ) )
163162ralab 3125 . . . . 5  |-  ( A. d  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } A. e  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  <->  A. d ( E. f  e.  I  ( (
( deg1  `
 R ) `  f )  <_  X  /\  d  =  (
(coe1 `  f ) `  X ) )  ->  A. e  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  (
( c ( .r
`  R ) d ) ( +g  `  R
) e )  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } ) )
164151, 163sylibr 212 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  NN0 )  /\  c  e.  ( Base `  R ) )  ->  A. d  e.  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) } A. e  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } )
165164ralrimiva 2804 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  A. c  e.  ( Base `  R
) A. d  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } A. e  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } )
166 hbtlem2.t . . . 4  |-  T  =  (LIdeal `  R )
167166, 11, 98, 101islidl 17298 . . 3  |-  ( { a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  e.  T  <->  ( {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } 
C_  ( Base `  R
)  /\  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) }  =/=  (/)  /\  A. c  e.  ( Base `  R
) A. d  e. 
{ a  |  E. b  e.  I  (
( ( deg1  `  R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) } A. e  e.  {
a  |  E. b  e.  I  ( (
( deg1  `
 R ) `  b )  <_  X  /\  a  =  (
(coe1 `  b ) `  X ) ) }  ( ( c ( .r `  R ) d ) ( +g  `  R ) e )  e.  { a  |  E. b  e.  I 
( ( ( deg1  `  R
) `  b )  <_  X  /\  a  =  ( (coe1 `  b ) `  X ) ) } ) )
16820, 59, 165, 167syl3anbrc 1172 . 2  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  { a  |  E. b  e.  I  ( ( ( deg1  `  R ) `  b
)  <_  X  /\  a  =  ( (coe1 `  b ) `  X
) ) }  e.  T )
1695, 168eqeltrd 2517 1  |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e. 
NN0 )  ->  (
( S `  I
) `  X )  e.  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2611   A.wral 2720   E.wrex 2721    C_ wss 3333   (/)c0 3642   {csn 3882   class class class wbr 4297    X. cxp 4843   -->wf 5419   ` cfv 5423  (class class class)co 6096   RRcr 9286   -oocmnf 9421   RR*cxr 9422    <_ cle 9424   NN0cn0 10584   Basecbs 14179   +g cplusg 14243   .rcmulr 14244   0gc0g 14383   Ringcrg 16650  LIdealclidl 17256  algSccascl 17388  Poly1cpl1 17638  coe1cco1 17639   deg1 cdg1 21528  ldgIdlSeqcldgis 29482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-ofr 6326  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-sup 7696  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-0g 14385  df-gsum 14386  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-subrg 16868  df-lmod 16955  df-lss 17019  df-sra 17258  df-rgmod 17259  df-lidl 17260  df-ascl 17391  df-psr 17428  df-mvr 17429  df-mpl 17430  df-opsr 17432  df-psr1 17641  df-vr1 17642  df-ply1 17643  df-coe1 17644  df-cnfld 17824  df-mdeg 21529  df-deg1 21530  df-ldgis 29483
This theorem is referenced by:  hbtlem7  29486  hbtlem6  29490
  Copyright terms: Public domain W3C validator