Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Unicode version

Theorem hbnae 1844
 Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbnae

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 1840 . 2
21hbn 1722 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6  wal 1532 This theorem is referenced by:  hbnaes  1847  dvelimfALT  1853  eujustALT  2117  a9e2nd  27017  a9e2ndVD  27374  a9e2ndeqVD  27375  a9e2ndALT  27397  a9e2ndeqALT  27398  ax12-2  27792 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
 Copyright terms: Public domain W3C validator