MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1w Structured version   Unicode version

Theorem hbn1w 1865
Description: Weak version of hbn1 1890. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypothesis
Ref Expression
hbn1w.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
hbn1w  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Distinct variable groups:    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem hbn1w
StepHypRef Expression
1 ax-5 1751 . 2  |-  ( A. x ph  ->  A. y A. x ph )
2 ax-5 1751 . 2  |-  ( -. 
ps  ->  A. x  -.  ps )
3 ax-5 1751 . 2  |-  ( A. y ps  ->  A. x A. y ps )
4 ax-5 1751 . 2  |-  ( -. 
ph  ->  A. y  -.  ph )
5 ax-5 1751 . 2  |-  ( -. 
A. y ps  ->  A. x  -.  A. y ps )
6 hbn1w.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
71, 2, 3, 4, 5, 6hbn1fw 1864 1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841
This theorem depends on definitions:  df-bi 188  df-ex 1660
This theorem is referenced by:  hba1w  1866  hbe1w  1867  ax10w  1877
  Copyright terms: Public domain W3C validator