Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1fw Structured version   Unicode version

Theorem hbn1fw 1863
 Description: Weak version of ax-10 1888 from which we can prove any ax-10 1888 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
Hypotheses
Ref Expression
hbn1fw.1
hbn1fw.2
hbn1fw.3
hbn1fw.4
hbn1fw.5
hbn1fw.6
Assertion
Ref Expression
hbn1fw
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem hbn1fw
StepHypRef Expression
1 hbn1fw.1 . . . 4
2 hbn1fw.2 . . . 4
3 hbn1fw.3 . . . 4
4 hbn1fw.4 . . . 4
5 hbn1fw.6 . . . 4
61, 2, 3, 4, 5cbvalw 1859 . . 3
76notbii 298 . 2
8 hbn1fw.5 . 2
97, 8hbxfrbi 1691 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 188  wal 1436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840 This theorem depends on definitions:  df-bi 189  df-ex 1661 This theorem is referenced by:  hbn1w  1864
 Copyright terms: Public domain W3C validator