MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1 Structured version   Visualization version   Unicode version

Theorem hbn1 1926
Description: Alias for ax-10 1925 to be used instead of it. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
Assertion
Ref Expression
hbn1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )

Proof of Theorem hbn1
StepHypRef Expression
1 ax-10 1925 1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1452
This theorem was proved from axioms:  ax-10 1925
This theorem is referenced by:  hbe1  1927  modal-5  1929  axc4  1948  axc7  1949  axc14  2211  bj-modal5e  31293  ax12indn  32558  axc5c4c711  36795  vk15.4j  36928  ax6e2nd  36968  ax6e2ndVD  37344  ax6e2ndALT  37366
  Copyright terms: Public domain W3C validator