MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1 Structured version   Unicode version

Theorem hbn1 1864
Description: Alias for ax-10 1863 to be used instead of it. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
Assertion
Ref Expression
hbn1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )

Proof of Theorem hbn1
StepHypRef Expression
1 ax-10 1863 1  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1405
This theorem was proved from axioms:  ax-10 1863
This theorem is referenced by:  hbe1  1865  modal-5  1867  axc4  1886  axc7  1887  axc14  2139  ax12indn  31979  axc5c4c711  36169  vk15.4j  36328  ax6e2nd  36368  ax6e2ndVD  36752  ax6e2ndALT  36774
  Copyright terms: Public domain W3C validator